REFERENCES
[1] H. Akaike, Stochastic Theory of Minimal Realization, IEEE Trans. Autom. Control 19, 6, 1974, 667–674. [1] H. Akaike, Stochastic Theory of Minimal Realization, IEEE Trans. Autom. Control 19, 6, 1974, 667–674.
[2] O. Aalen, A. Frigressi, What can statistics contribute to a causal understanding? Scand. J. Statist. 34, 2007, 155–168
[3] R.R. Bahadur, Sufficiency and Statistical Decision Functions, Annals of Mathematical Statistics, Vol. 25, 1954, 423–462.
[4] P. Bremaud and M. Yor, Changes of Filtrations and of Probability measures, Z. Wahrscheinlichkeitstheorie verw. Gebiete 45 1978, 269– 295.
[5] D. Commenges, A. Gegout-Petit, A general dy- ´ namical statistical model with causal interpretation, J. R. Statist. Soc. B 71, 2009, 719–736
[6] F. Comte, E. Renault, Noncausality in Continuous Time Models, Econometric Theory, Vol. 12, 1996, 215–256
[7] R. J. Elliot, Stochastic Calculus and Applications (Springer-Verlag, New York, 1982).
[8] J.P. Florens, D. Fougeres, Noncausality in Con- ` tinuous Time, Econometrica 64 1996, 1195– 1212.
[9] J. P. Florens, M. Mouchart, J.M. Rolin, Elements of Bayesian Statistics (Marcel Dekker, New York, 1990).
[10] J. Geweke, R.C. Marshall, G.A. Zarkin, ”Mobility Indices in Continuous Time Markov Chains”, Econometrica, Vol.54, 1986, 1407–1423.
[11] J.B. Gill, Lj. Petrovic, Causality and Stochas- ´ tic Dynamic Systems, SIAM J. Appl. Math. 47, 1987, 1361–1366 .
[12] C.W.J. Granger, Investigation Causal Relations by Econometric Models and Cross Spectral Methods, Econometrica 37, 1969, 424–438.
[13] C. W. J., Granger, P. Newbold, Forecasting Economic Time Series (Academic Press, New York, 1977).
[14] W.J. Hall, R.A. Wijsman, J.K. Gosh, The Relationship between Sufficiency and Invariance with Applications in Sequential Analysis, Annals of Mathematical Statistics, Vol. 36, 1965, 575–614.
[15] J.P. Heckman, B. Singer, ”Economic Duration Analysis”, Journal of Econometrics, 24, 1982, 563–132.
[16] D.N. Hoover, J.H. Keisler, Adapted Probability Distributions, Trans. Am.Math.Soc., 286, 1984, 159–201
[17] J. Jacod, A. N. Shiryaev, 2002. Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin.
[18] J. R. McCrorie, M. J. Chambers, Granger causality and sampling of economic processes, Journal of Econometrics 132, 2006, 311–336.
[19] M. P. Kean, Brownian Motion with Severaldimensional Time, Theory Probab. Appl., VIII, 4, 1963, 203-210.
[20] O. Knill, Probability Theory and Stochastic Processes with Applications, Overseas Press, 2009.
[21] A. Lindquist, A., G. Picci, Realization Theory for Multivariate Stationary Gaussian Processes, SIAM Control and Optimization 20, 6, 1985, 809–857.
[22] A. Melino, ”Estimation of Continuous-Time Models in Finance”, Advances in Econometrics, Sixth World Congress, Econometricic Society Monographs, ed. by C.A. Sims, Cambridge; Cambridge University Press, 1994, 313–354.
[23] R.C. Merton, (1990), ”Continuous- Time Finance”, Oxford: Basil Blackwell.
[24] P.A. Mykland, Statistical Causality, Statistical report No. 14, University of Bergen, 1986.
[25] Lj. Petrovic, Causality and Stochastic Realiza- ´ tion Problem, Publ. Inst. Math. 45(59), 1989, 203–210.
[26] Lj. Petrovic, Causality and Markovian Repre- ´ sentations, Statist. Probab. Lett. 29, 1996, 223– 227.
[27] Lj. Petrovic, Causality and Markovian Reduc- ´ tions and Extensions of a Family of Hilbert Spaces, J. Math. Systems, Estimat. Control 8, 1998, 12 pp.
[28] Lj. Petrovic, Statistical Causality and Stochas- ´ tic Dynamic Systems, International Journal of Applied Mathematics and Informatics, (ISSN 2074–1278), Issue 3, Volume 5, 153–156, 2011.
[29] Lj. Petrovic, S. Dimitrijevi ´ c, Invariance of sta- ´ tistical causality under convergence, Statist. Probab. Lett. 81, 2011, 1445–1448.
[30] Lj. Petrovic, S. Dimitrijevi ´ c, Statistical causality ´ and adapted distribution, Czhechoslovak Mathematica Journal, ISSN 0011-4642 Springer Verlag, Vol. 61, No. 3, 2011, 827–843.
[31] Lj. Petrovic, S. Dimitrijevi ´ c, Causality with fi- ´ nite horizon of the past in continuous time, Statist. Probab. Lett. 82, 2012, 1219–1223.
[32] Lj. Petrovic, D. Stanojevi ´ c, Statistical Causali- ´ ty, Extremal Measures and Weak Solutions of Stochastical Differential Equations With Driving Semimartingales J. Math. Model. Algor. 9, 2010, 113–128.
[33] Lj. Petrovic, D.Valjarevi ´ c, Statistical Causality ´ and stable subspaces of Hp , Bull. Aust. Math. Soc., (2012), 1–9.
[34] Lj. Petrovic, S. Dimitrijevi ´ c, D. Valjarevi ´ c,´ Granger Causality and Stopping Times, Lithuanian Mathematical Journal, 56(3), 410-416, 2016.
[35] C. van Putten, J.H. van Schuppen, On Stochastic Dynamic Systems, International Symposium on Mathematical Theory of Networks and Systems, Vol. 3 (Delft 1979), Western Periodical, North Hollywood, Calif., 1979, 350-356.
[36] Rozanov, Yu.A. (1977), On Markovian Extensions of Random Process, Theory Probab. Appl., 22, 1, 194–199.
[37] Rozanov, Yu.A. (1982), Markov Random Fields, Springer-Verlag, Berlin, New York, Heidelberg.
[38] D. Valjarevic, Lj. Petrovi ´ c, Statistical causality ´ and orthogonality of local martingales, Statist. Probab. Lett. 82, 2012, 1326–1330.
|