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Abstract: The paper considers a statistical concepts of causality in continuous time between flows of information
and between stochastic processes which is based on Granger’s definitions of causality. More precisely, we will see
how conditional orthogonality and conditional independence can serve as a basis for a general probabilistic theory
of causality for both stochastic processes and single events. These results are motivated by causality relationship
between filtrations ”(Gt) is a cause of (Et) within (Ft)” and which is based on Granger’s definition of causality.
Also, we consider causality relationships between σ-fields (filtrations) associated by stopping times, which are
applicable to the stopped processes (see Petrović et al. 2016). Then we give some basic properties of causality up
to some stopping time.
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1 Introduction

Many scientific studies focus on finding causal rela-
tionships between observed processes. Often this can-
not be done by experiments and researchers are re-
stricted to observe the systems that they want to de-
scribe. This is the case in many fields, for example in
economics, demography and etc. Granger-causality is
one of the most popular measure to reveal causality
influence of time series widely applied in economics,
demography, neuroscience etc. The study of Granger–
causality has been mainly preoccupied with time se-
ries. We shall instead concentrate on continuous time
processes. Many of systems to which it is natural to
apply tests of causality, take place in continuous time.
For example, this is generally the case within econ-
omy. For those systems, it may be difficult to use a
discrete time model.

The authors of first papers in which we can find
definitions of causality in continuous time in term of
Hilbert spaces, i.e. in L2-framework, were Gill and
Petrović (1987) and Petrović (1989, 1996). Also, def-
inition of causality was given in continuous time, but
given in terms of σ-algebras, i.e. natural filtrations of
stochastic processes were Mykland (1986) and Flo-
rens and Fougères (1996). Recently, there have been
several papers which deal with these themes, among
other in Aalen and Frigressi (2007), Commenges and

Gégout-Petit (2009), Gégout-Petit and Commenges
(2010).

The paper is organized as follows. In Section
2 we present different concepts of causality between
flows of information that are represented by families
of Hilbert spaces. Also, we develop concept of causal-
ity for stochastic process with continuous time param-
eter, using conditional independence among observed
filtrations, we work in σ-algebraic framework.

The main results are given in Section 3. In this
section we give some basic properties of the stop-
ping times, stopped filtrations and stopped processes.
Then, we introduce the definition of statistical causal-
ity associated to some stopping time and give some
properties of the concept of causality up to some stop-
ping time.

2 Causality between families of
Hilbert Spaces and between Filtra-
tions

In the first part of this section we give various concepts
of causality relationship between flow of informations
(represented by families of Hilbert spaces).

Causality concepts expressed in terms of condi-
tional orthogonality in Hilbert spaces of square in-
tegrable random variables were studied by Hosoya
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(1977), Florens and Mouchart (1985). In the papers
of Florens and Mouchart (1982), Mykland (1986),
Gill and Petrović (1987), Petrović (1989, 1996) it is
shown how conditional orthogonality can serve as a
basis for a general probabilistic theory of causality for
both processes and single events.

Let F be a Hilbert space whose inner product is
defined by (·, ·). For arbitrary subspaces F1 and F2

of F (all subspaces are taken to be closed), F1 ⊥ F2

means that F1 and F2 are orthogonal. The orthogonal
projection of x ∈ F1 onto F2 is denoted by P (x|F2)
and P (F1|F2) will denote the orthogonal projection
of of F1 onto F2 and F1 ⊖ F2 will denote a Hilbert
space generated by all elements x − P (x|F2), where
x ∈ F1. If F2 ⊆ F1, then F1 ⊖ F2 coincides with
F1 ∩ F⊥

2 , where F⊥
2 is the orthogonal complement of

F2 in F ; i.e. H⊥
2 = H⊖H2.

Definition 1. If F1 and F2 are arbitrary subspaces
of Hilbert space F , then it is said that X is splitting
for F1 and F2 or that F1 and F2 are conditionally
orthogonal given X (and written as F1 ⊥ F2|X) if

(1) F1 ⊖X ⊥ H2F ⊖X,

or, equivalently,

(x1, x2) = (P (x1|X), P (x2|X)) for all x1 ∈ F1, x2 ∈ F2.

When X is trivial, i.e. X = {0}, this reduces to the
usual orthogonality F1 ⊥ F2.

The notion of splitting was first given in [19].
Let F = (Ft), t ∈ R be a family of Hilbert

spaces. We shall think about Ft as a basis for approxi-
mation an information available at time t, or as a basis
for approximation current information. Total informa-
tion F<∞ carried by F is defined by F<∞ = ∨t∈RFt,
while past and future information of F at t is de-
fined as F≤t = ∨s≤tFs and F≥t = ∨s≥tFs, respec-
tively. It is to be understood that F<t = ∨s<tFs and
F>t = ∨s>tFs do not have to coincide with F≤t and
F≥t respectively; F<t and F>t are sometimes referred
to as the real past and real future of F at t.

Analogous notation will be used for families G =
(Gt) and E = (Et).

Causality is, in any case, a prediction property
and central question is: is it possible to reduce avail-
able information in order to predict a given stochastic
process? Motivated by Granger nonlinear causality,
we give the definition of causality via filtrations.

The intuitively plausible notion of causality be-
tween families of Hilbert spaces is given in Gill,
Petrović (1987) and generalized in Petrović (1996).

Definition 2. Let E, G and F be arbitrary
families of Hilbert spaces. It is said that G is a cause
of E within F (and written as E |< G;F) if E<∞ ⊆
F<∞, G ⊆ F and

(2) E<∞ ⊥ F≤t|G≤t

for each t.

The essence of (2) is that all information about
E<∞ that gives F≤t comes via G≤t for arbitrary t;
equivalently, G≤t contains all the information from
the F≤t needed for predicting E<∞. It is s equivalent
to E<∞ ⊥ F≤t

∨
G≤t|G≤t. The last relation means

that condition G ⊆ F does not represent essential re-
striction. Intuitively, E |< G;F means that, for ar-
bitrary t, information about E<∞ provided by F≤t is
not ”bigger” than that provided by G≤t.

If G and F are such that G |< G;F, we shall say
that G is its own cause within F (compare with [24]).
It should be mentioned that the notion of subordina-
tion (as introduced in [36]) is equivalent to the notion
of being one’s own cause, as defined here.

If G and F are such that G | < G;G
∨
F

(where G
∨
F is a family determined by (G

∨
F )t =

Gt
∨
Ft), we shall say that F does not cause G. It

is clear that the interpretation of Granger–causality is
now that F does not cause G if G |< G;G

∨
F (see

[24]). Without difficulty, it can be shown that this term
and the term ” F does not anticipate G ” (as intro-
duced in [37]) are identical.

Definition 2 can be applied to stochastic pro-
cesses: it will be said that stochastic processes are
in a certain relationship if and only if the Hilbert
spaces they generate are in this relationship. So, from
Definition 2 it follows that stochastic process Y is a
cause of a process X within process Z relative to P if
FX
<∞ ⊆ FZ

<∞, FY ⊆ FZ and if FX
<∞ and FZ

≤t are
conditionally orthogonal of given F Y

t for each t, i.e.

FX
<∞ ⊥ FZ

≤t|F Y
≤t for each t.

In the remaining part of this section we give a
concept of causality for stochastic process with con-
tinuous time parameter, using conditional indepen-
dence among observed filtrations, we work in σ-
algebraic framework. The benefit of this approach is
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to obtain a theory invariant not only to linear transfor-
mation of the variables but also to any change of co-
ordinates and theory which easily can deal with non-
linear transformations.

A probabilistic model for a time–dependent sys-
tem is described by (Ω,F ,Ft, P ) where (Ω,F , P ) is
a probability space and {Ft, t ∈ I} is a ”framework”
filtration, Ft is a set of all events in the model up to
and including time t and Ft is a subset of F . F∞ is
the smallest σ−algebra containing all the Ft (even if
sup I < +∞), F∞ =

∨
t∈I Ft. We suppose that the

filtration {Ft} satisfies the ”usual conditions”, which
means that {Ft} is right continuous and each Ft is
complete. Analogous notation will be used for filtra-
tions E = {Et} and G = {Gt}. It is said that filtra-
tion G is a subfiltration of F and written as G ⊆ F,
if Gt ⊆ Ft for each t.

Definition 3. (compare with (Rozanov, 1977).
Let (Ω,F , P ) be a probability space and F1, F2

and G arbitrary subσ-algebras from F . It is said that
G is splitting for F1 and F2 or that F1 and F2 are
conditionally independent given G (and written as
F1 ⊥ F2|G) if

(∀A1) (A1 ∈ F1)(∀A2) (A2 ∈ F2) P (A1A2|G) =
P (A1|G)P (A2|G).

We now give a definition of causality formulated
in terms of σ-algebras (filtrations), which is analo-
gous to the Definition 2 formulated in terms of Hilbert
spaces.

Definition 4. Let F = {Ft}, G = {Gt} and
E = {Et}, t ∈ I, be filtrations on the same prob-
ability space. It is said that G is a cause of E
within F relative to P (and written as E |< G;F;P)
if E∞ ⊆ F<∞, G ⊆ F and if E<∞ is conditionally
independent of Ft given Gt for each t,

E<∞ ⊥ Ft|Gt

i.e.

(∀t ∈ I)(∀A ∈ E<∞) P (A|Ft) = P (A|Gt).

If there is no doubt about P , we omit ”relative to P ”.

Intuitively, E |< G;F means that, for arbitrary t,
information about E<∞ provided by Ft is not ”bigger”
than that provided by Gt.

Gégout-Petit and Commenges (2010) use condi-
tional independence of filtrations to establish some

causality relations, too. In their terminology causality
relationship FX |< FX ;FX,Z would be interpreted as
(FX

t ) is filtration-based strong local independent of
filtration (FZ

t ).

A family of σ-algebras (filtrations) induced by a
stochastic process X = {Xt, t ∈ I} is given by FX =
{FX

t , t ∈ I}, where FX
t = σ{Xu, u ∈ I, u ≤ t}∨N

being the smallest σ-algebra with respect to which all
random variables Xu, u ≤ t, are measurable. The
process X = {Xt} is (Ft)-adapted if FX

t ⊆ Ft for
each t.

Definition 4 can be applied to stochastic pro-
cesses. It will be said that stochastic processes are
in a certain relationship if we were talking about the
corresponding filtrations. Specially, (Ft)−adapted
stochastic process X = {Xt} is its own cause if
FX = (FX

t ) is its own cause within F = (Ft) if
FX |< FX;F;P.

Remark. The condition of Granger causality is
actually a condition of transitivity largely used in se-
quential analysis (in statistics), see ( Bahadur, 1954)
and (W.J. Hall, R.A. Wijsman, J.K. Gosh, 1965).

3 Causality between Stopped Pro-
cesses

We now extend Definition 4 from fixed times to stop-
ping times, i.e. we give characterization of causality
using σ-field associated to stopping times. This gener-
alization involves stopping times – a class of random
variables that plays the essential role in the Theory of
Martingales (for details see Elliot, 1982).

Let us briefly recall some basics about stopping
times and σ-algebras.

• We say that T : Ω → R ∪ {∞} is stopping time
with respect to filtration F, provided that {ω |
T (ω) ≤ t} ∈ Ft, for all t.

• FT = {A ∈ F | A ∩ {T ≤ t} ∈ Ft, for all t}
is σ-field and intuitively FT is the information
available at time T .

• If S and T are stopping times with respect to the
filtration F, then S ∧ T is a stopping time with
respect to the filtration F, too. Specially, if T is a
stopping time and t some real number, then t∧T
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defined by

t ∧ T (ω) = min(t, T ) =


T (ω), T (ω) < t

t, T (ω) ≥ t

is a stopping time.

• If S and T are stopping times such that S ≤ T
then FS ⊆ FT , and as a consequence we get that
Fs∧T ⊆ Ft∧T for all s < t.

In many situations we observe some systems up
to some random time, for example till the time when
something happens for the first time. For a process X ,
we set XT (ω) = XT (ω)(ω), whenever T (ω) < +∞.
We define the stopped process XT = {Xt∧T , t ∈ I}
with

XT
t (ω) = Xt∧T (ω)(ω) = Xt1{t<T} +XT 1{t≥T}.

Theorem 1. (see Knill, 2009) If process X is
progressively measurable with respect to the filtration
F = {Ft} and T is an (Ft)-stopping time, then the
stopped process XT is progressively measurable with
respect to the filtration FT = {Ft∧T }.

The aim of this paper is to give some properties of
the concept of causality for the stopped processes as a
generalization of the concept given by the Definition
4. More precisely, we define the concept of causal-
ity for the stopped (progressively measurable) process
XT using the stopped filtration FT = {FT∧t}, i.e. us-
ing the σ-algebras associated to stopping times. Since
T is a (Ft)-stopping time and filtration F is right con-
tinuous, we have that F(t∧T )+ = Ft∧T , i.e. the filtra-
tion Ft∧T is right continuous, too.

The following definition is a generalization od
Definition 4 from fixed time to stopping time, i.e. it
gives causality between filtrations F, G and E up to
stopping time T .

Definition 5. (see Petrović et al. 2016) Let F =
{Ft}, G = {Gt} and E = {Et}, t ∈ I, be given fil-
trations on the probability space (Ω,F , P ) and let T
be a stopping time relative to filtration E. It is said
that filtration G entirely causes E within F relative
to P up to stopping time T or that filtration GT en-
tirely causes ET within FT relative to P (and written
as ET |< GT ;FT ;P ) if ET ⊆ FT , GT ⊆ FT and if
ET is conditionally independent of Ft∧T given Gt∧T
for each t, i.e.

ET ⊥ Ft∧T |Gt∧T ,

or, equivalently,

(∀t ∈ I)(∀A ∈ ET ) P (A|Ft∧T ) = P (A|Gt∧T ).

From the following result it follows that the rela-
tionship ”being its own cause” for filtrations associ-
ated to stopping times is transitive relationship.

Theorem 1 Let F = {Ft}, G = {Gt}, E = {Et} be
filtrations on the probability space (Ω,F , P ). If T is
a stopping time relative to E, then from

ET |< ET ;GT ;P and GT |< GT ;FT ;P,

it follows that

ET |< ET ;FT ;P.

If relationship ”being one’s own cause” holds up
to stopping time T and if S is another stopping time
such that S ≤ T , it is natural to expect that the same
relationship will hold up to stopping time S, as is
shown in the next theorem.

Theorem 2 Let F = {Ft} and G = {Gt} be fil-
trations on the probability space (Ω,F , P ) such that
G ⊆ F and let T and S be a two stopping times rela-
tive to G, such that S ≤ T . Then, from

GT |< GT ; FT ;P it follows GS |< GS ; FS ;P .

4 Conclusion - Some Applications
The study of Granger–causality has been mainly pre-
occupied with time series. In this paper we consi-
dered continuous time processes. Many of systems
to which it is natural to apply tests of causality, take
place in continuous time. For example, this is gener-
ally the case within economy, for example, in labor
economics (see Heckman and Singer, 1984, Geweke,
Marshall and Zarkin, 1986), in modern finance theory
(see Merton, 1990 and Melino, 1994). In this case, it
may be difficult to use a discrete time model. Also,
the observed ”causality” in a discrete time model may
depend on the length of interval between each two
successive samplings, as in the case with Granger–
causality.

The given causality concept can be applied to reg-
ular solutions of stochastic differential equations. The
equivalence between some models of causality and
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weak uniqueness (for weak solutions of stochastic dif-
ferential equations) is shown in Petrović, Stanojević,
2010 and Petrović, Valjarević, 2014.

The given concept of causality is related to the
orthogonality of martingales and local martingales in
Valjarević, Petrović, 2012. This connection is consid-
ered for the stopped local martingales, too.

Petrović, D.Valjarević, 2012, considered a stable
subspaces of Hp, which contains the right continu-
ous uniformly integrable (Ft;P )-martingales and the
necessary and sufficient conditions, in terms of statis-
tical causality, for these spaces to coincide with Hp

are given.
Some special cases of given causality concept

links Granger–causality with adapted distribution.
Some results are given in paper Petrović, S. Dimitri-
jević, 2011.
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