REFERENCES
[1] Arnold, V.I., On matrices depending on parameters. UspekhiMat. Nauk.26, 1971. [1] Arnold, V.I., On matrices depending on parameters. UspekhiMat. Nauk.26, 1971.
[2] C.T. Chen, “Introduction to Linear System Theory”. Holt, Rinehart and Winston Inc, New York, (1970).
[3] L. Dai “Singular Control Systems”. Springer Verlag. New York (1989).
[4] A. Fax, R. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. Automat. Control. 49, (9), pp. 14531464, (2004).
[5] M.I. Garc´ıaPlanas, Sensivity and stability of singular systems under proportional and derivative feedback, Wseas Transactions on Mathematics, 8, (11), pp 635644, (2009).
[6] M.I. Garc´ıaPlanas, Obtaining Consensus of Multiagent Linear Dynamic Systems, Advances in Applied and Pure Mathematics, pp. 9195, (2014)
[7] M.I. Garc´ıaPlanas, M.D. Magret, Miniversal deformations of linear systems under the full group action. Systems and control letters, 35, pp. 279–286, (1998).
[8] M.I. Garc´ıaPlanas, S. Tarragona, A. Diaz, Controllability of timeinvariant singular linear systems. From physics to control through an emergent view. pp. 112 117. World Scientific, 2010.
[9] A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transaction on Automatic Control. 48 (6), pp. 943948, (2007).
[10] P. Lancaster, M. Tismenetsky, “The Thoery of Matrices”. Academic Press. San Diego (1985).
[11] C.T. Lin, Structural Controllability. IEEE Trans. Automatic Control. AC19, pp. 201–208, (1974).
[12] R.O. Saber, R.M. Murray, Consensus Protocols for Networks of Dynamic Agents, Report.
[13] R.O. Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and timedelays, IEEE Trans. Automat. Control. 49, (9), pp. 15201533, (2004).
[14] J. Wang, D. Cheng, X. Hu, Consensus of multiagent linear dynamics systems, Asian Journal of Control 10, (2), pp. 144155, (2008).
[15] D. West “Introduction to Graph Theory” Prentice Hall (3rd Edition), (2007).
[16] G. Xie, L. Wang, Consensus control for a class of networks of dynamic agents: switching topology, Proc. 2006 Amer. Contro. Conf., pp. 1382 1387, (2007).
