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Abstract: The analysis of control of linear multi-agent systems has recently emerged as an important domain that
is receiving a lot of interest from a variety of research communities, and consensus plays a fundamental role in
this field of study. We will show how using linear algebra techniques can be analyzed the consensus controllability
problem for singular multi-agent systems, in which all agents have an identical linear dynamic mode that can be in
any order.
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1 Introduction
It is well known the great interest generated in many
research communities about the study of control
multi-agents system, as well as the growing interest
in distributed control and coordination of networks
consisting of multiple autonomous agents. There are
many publications as for example ([6], [12], [14],
[16]). It is due to the multi-agents appear in different
fields as for example in consensus problem of com-
munication networks ([12]), or formation control of
mobile robots ([4]).

The consensus problem has been studied under
different points of view, for example Jinhuan Wang,
Daizhan Cheng and Xiaoming Hu in [14], analyze the
case of multiagent systems in which all agents have an
identical stable linear dynamics system, M.I. Garcı́a-
Planas in [6], generalize this result to the case where
the dynamic of the agents are controllable.

The concept of controllability is fundamental in
dynamic systems and it is studied under different ap-
proaches (see [2],[3],[5],[8], for example). The struc-
tural controllability is a generalization of the classi-
cal controllability concept for dynamical systems, and
purely based on the graphic topologies among the en-
tries of the matrices defining the system.

In this paper, we investigate the structural con-
trollability of a class of multiagent singular systems
consisting of k agents with dynamics

Eẋ1 = Ax1 +Bu1

...
Eẋk = Axk +Buk

where E,A ∈Mn(IC), B ∈Mn×1(IC).

2 Preliminaries

2.1 Algebraic Graph theory

We consider a graph G = (V, E) of order k with the
set of vertices V = {1, . . . , k} and the set of edges
E = {(i, j) | i, j ∈ V} ⊂ V × V .

Given an edge (i, j) i is called the parent node and
j is called the child node and j is in the neighbor of i,
concretely we define the neighbor of i and we denote
it by Ni to the set Ni = {j ∈ V | (i, j) ∈ E}.

The graph is called undirected if verifies that
(i, j) ∈ E if and only if (j, i) ∈ E . The graph is called
connected if there exists a path between any two ver-
tices, otherwise is called disconnected.

Associated to the graph we consider a matrixG =
(gij) called (unweighted) adjacency matrix defined as
follows gii = 0, gij = 1 if (i, j) ∈ E , and gij = 0
otherwise.

In a more general case we can consider that a
weighted adjacency matrix is G = (gij) with gii = 0,
gij > 0 if (i, j) ∈ E , and gij = 0 otherwise).

The Laplacian matrix of the graph is

L = (lij) =


|Ni| if i = j
−1 if j ∈ Ni
0 otherwise

Remark 1 i) If the graph is undirected then the
matrixL is symmetric, then there exist an orthog-
onal matrix P such that PLP t = D.
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ii) If the graph is undirected then 0 is an eigen-
value of L and 1k = (1, . . . , 1)t is the associated
eigenvector.

iii) If the graph is undirected and connected the
eigenvalue 0 is simple.

For more details about graph theory see (D. West,
2007).

2.2 Kronecker product

Remember that A = (aij) ∈ Mn×m(IC) and B =
(bij) ∈ Mp×q(IC) the Kronecker product is defined as
follows.

Definition 2 Let A = (aij) ∈ Mn×m(IC) and B ∈
Mp×q(IC) be two matrices, the Kronecker product of
A and B, write A⊗B, is the matrix

A⊗B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

...
an1B an2B . . . anmB

 ∈Mnp×mq(IC)

Among the properties that verifies the product of Kro-
necker we will make use of the following

1) (A+B)⊗ C = (A⊗ C) + (B ⊗ C)

2) A⊗ (B + C) = (A⊗B) + (A⊗ C)

3) (A⊗B)⊗ C = A⊗ (B ⊗ C)

4) If A ∈ Gl(n; IC) and B ∈ Gl(p; IC)), then A ⊗
B ∈ Gl(np; IC)) and (A⊗B)−1 = A−1 ⊗B−1

5) If the products AC and BD are possible, then
(A⊗B)(C ⊗D) = (AC)⊗ (BD)

See [10] for more information and properties.

3 Consensus

Roughly speaking, we can define the consensus as a
collection of processes such that each process starts
with an initial value, where each one is supposed to
output the same value and there is a validity condi-
tion that relates outputs to inputs. More concretely,
the consensus problem is a canonical problem that ap-
pears in the coordination of multi-agent systems. The
objective is that Given initial values (scalar or vector)
of agents, establish conditions under which through
local interactions and computations, agents asymptot-
ically agree upon a common value, that is to say: to
reach a consensus.

We consider now, a multi-agent where the dy-
namic of each agent is given by the following dynam-
ical systems

Eẋ1 = Ax1 +Bu1

...
Eẋk = Axk +Buk

(1)

xi ∈ IRn, ui ∈ IRm, 1 ≤ i ≤ k. Where matrices
E,A ∈Mn(IR) and B ∈Mn×m(IR).

The communication topology among agents is de-
fined by means the undirected graph G with

i) Vertex set: V = {1, . . . , k}

ii) Edge set: E = {(i, j) | i, j ∈ V} ⊂ V × V .

an in a similar way as before, we have the following.

Definition 3 Consider the system 1. We say that the
consensus is achieved using local information if there
exists a state feedback

ui = Ki

∑
j∈Ni

(xi − xj), 1 ≤ i ≤ k

such that

lim
t→∞
‖xi − xj‖ = 0, 1 ≤ i, j ≤ k.

zi =
∑
j∈Ni

(xi − xj), 1 ≤ i ≤ k.

(Ik ⊗ E)Ẋ = (Ik ⊗A)X + (Ik ⊗B)U
Z = (L ⊗ I)X
U = (Ik ⊗K)Z

Then, and taking into account that

(Ik ⊗B)(Ik ⊗K)(L ⊗ In)X =
(L ⊗BK)X = (L ⊗B)(Ik ⊗K)X

The system is equivalent to

(Ik ⊗ E)Ẋ = (Ik ⊗A)X + (L ⊗B)Ū
Ū = (Ik ⊗K)X (2)

4 Controllability

The controllability of the system 2 can be analyzed
using the generalized Hautus criteria
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Proposition 4 The system is controllable if and only
if

rank
(
Ik ⊗ E L ⊗B

)
= kn

rank
(
s(Ik ⊗ E)− (Ik ⊗A) L ⊗B

)
= kn

Proposition 5 Let J be the Jordan reduced of the ma-
trix L and P such that L = P−1JP . Then, the system
2 is controllable if and only if

rank
(
Ik ⊗ E J ⊗B

)
= kn

rank
(
(s(Ik ⊗ E)− (Ik ⊗A) J ⊗B

)
= kn

Proof. Suppose that there exist S such that P−1JP =
L and

rank
(
Ik ⊗ E P−1JP ⊗B

)
=

rank
(
P 1IkP ⊗ E P−1JP ⊗B

)
=

rank ((P 1 ⊗ I)(Ik ⊗ E)(P ⊗ I) (P−1 ⊗ I)(J ⊗B)(P ⊗ I)) =

rank (P−1 ⊗ I)
(
I ⊗ E J ⊗B

)(P ⊗ I
P ⊗ I

)
=

rank
(
I ⊗ E J ⊗B

)
In an analogous form:

rank
(
s(Ik ⊗ E)− (Ik ⊗A) L ⊗B

)
=

rank (P−1 ⊗ I) (s(Ik ⊗ E)− (Ik ⊗A) J ⊗B)(
P ⊗ I

P ⊗ I

)
=

rank
(
s(Ik ⊗ E)− (Ik ⊗A) J ⊗B

)
ut

Corollary 6 Suppose that the matrix L is diagonaliz-
able with non-zero eigenvalues. Then, the system 2 is
controllable if and only if each agent is controllable.

Proof. Let λi 6= 0, i = 1, . . . n be the eigenvalues of
L. Then

rank
(
I ⊗ E D ⊗B

)
=

rank


E λ1B

E λ2B
. . . . . .

E λnB

 =

rank


E B

E B
. . . . . .

E B



and

rank
(
s(I ⊗ E)− (I ⊗A) D ⊗B

)
=

rank

sE −A λ1B

. . .
. . .

sE −A λnB

 =

rank


sE −A B

sE −A B

. . .
. . .

sE −A B


ut

Corollary 7 If the graph is undirected the system is
not controllable.

Proof. If the graph is undirected, L is diagonalizable
with zero as an eigenvalue. ut

In a more general case, the matrix L can be re-
duced to a Jordan form J :

J =

J(λ1) . . .
J(λr)

 , J(λi) =

J1(λi) . . .
Jni (λi)

 ,

Jj(λi) =


λi
1 λi

. . .
. . .

1 λi

 .

Corollary 8 Suppose that the matrix L can be re-
duced to the Jordan form with non-zero eigenvalues
λ1, . . . , λr. Then, the system 2 is controllable if and
only if each agent is controllable.

Proof. Let λi 6= 0, i = 1, . . . r be the eigenvalues of
L.

rank
(
Ik ⊗ E J ⊗B

)
=∑r

i=1 rank
(
Iki ⊗ E J(λi)⊗B

)
=∑r

i=1(
∑ni
j=1 rank

(
Ikij ⊗ E Jj(λi)⊗B

)
with k1 + . . .+ kr = k, ki1 + . . . kini

= ki.

rank
(
Ikij ⊗ E Jj(λi)⊗B

)
=

rank


E λiB

E B λiB
. . . . . . . . .

E B λiB

 =

rank


E B

E B
. . . . . .

E B
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and

rank
(
s(Ikij ⊗ E)− (Ikij ⊗A) Jj(λi)⊗B

)
=

rank


sE −A λiB

sE −A B λiB

. . .
. . .

. . .
sE −A B λiB

=

rank


sE −A B

sE −A B

. . .
. . .

sE −A B


ut

5 Structural controllability

A multiagent linear system is said to be structurally
controllable if one can find a set of values for the
non-zero entries of the matrices such that the corre-
sponding multiagent linear system is controllable in
the classical sense, that is to say to find a matrix L(ε)
near L preserving structure in such a way that the new
system is controllable.

In a more formal way we have the following def-
inition.

Definition 9 A singular system Eẋ = Ax + Bu is
structurally controllable if and only if ∀ε > 0, there
exists a controllable system Ēẋ(t) = Āx(t) + B̄u(t),
of the same structure asEẋ(t) = Ax(t)+Bu(t) such
that ‖Ē − E‖ < ε ‖Ā−A‖ < ε and ‖B̄ −B‖ < ε.

A singular system Eẋ(t) = Aσx(t) +Bσu(t) has the
same structure as another system Ēẋ(t) = Āσx(t) +
B̄σu(t), of the same dimensions, if for every fixed
zero entry of the triple of matrices (E,A,B), the cor-
responding entry of the triple of matrices (Ē, Ā, B̄) is
fixed zero and vice versa.

Remark 10 If a singular system is controllable it is
structural controllable, but the converse is false.

5.1 Structural consensus controllability

In our particular setup we define structural controlla-
bility character of systems 2 in the following manner.

The system 2 is structural controllable if and only
if, there exists a matrix L̄ with the same structure as L
such that for all ε > 0 ‖L̄ − L‖ the system

(Ik ⊗ E)Ẋ = (Ik ⊗A)X + (L̄ ⊗B)Ū
Ū = (Ik ⊗K)X (3)

is controllable.

It is obvious that if matrix L has a null eigenvalue,
by the fact modify any nonzero term of the matrix, not
a matrix of maximum range is achieved. It is even
possible that this is not possible, as you can see in the
following examples.
Example

i) Let L be the matrix 2 −1 −1
−1 1 0
−1 0 1


Considering

L(ε) =

 2 −1 −1
−1− ε 1 + ε 0
−1 0 1


the matrix L(ε) has not full rank but, but considering
the perturbation

L(ε) =

2 + ε −1 −1
−1 1 0
−1 0 1


the matrix L(ε) has full rank.

ii) Let L be the matrix0 1 1
0 0 1
0 0 0

 ,
for all εi < 0 i = 1, 2, 3, the matrix

L(ε) =

0 1 + ε1 1 + ε2
0 0 1 + ε3
0 0 0


the matrix L(ε) has not full rank.

We will analyze that (non-zero) elements of the
matrix L must be modified in order to achieve a full
rank matrix. When tackling the problem of how
small perturbations of the system may lead to differ-
ent equivalence classes (preserving canonical reduced
form) a classical approach is to consider miniversal
deformations, which provide all possible equivalence
classes which can arise from small perturbations.

We recall here the definition of deformation and
their characterization through versality (see [1], [7]).

Definition 11 A deformation ϕ(λ) of x0 ∈ M is a
smooth mapping

ϕ : U0 −→M

such that U0 ⊆ IRl is an open neighborhood of the
origin and ϕ(0) = x0. The vector λ = (λ1, . . . , λ`) ∈
U0 is called the parameter vector.
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Let G be a Lie group acting overM via an action
α, that is to say, for all g ∈ G, x ∈ M, αx(g) =
g ◦ x ∈M.

Definition 12 A deformation ϕ(λ) of x0 is called
versal if any deformation ϕ′(ξ) of x0, where ξ =
(ξ1, . . . , ξk) ∈ U ′0 ⊂ IRk is the parameter vector, can
be represented in some neighborhood of the origin as

ϕ′(ξ) = g(ξ) ◦ ϕ(φ(ξ)), ξ ∈ U ′′0 ⊂ U ′0, (4)

where φ : U ′′0 −→ IR` and g : U ′′0 −→ G are differ-
entiable mappings such that φ(0) = 0 and g(0) is the
identity element of G.

When a versal deformation has the minimal num-
ber of parameters, it is called miniversal.

Locally, in x ∈M,M is isomorphic to the carte-
sian product of ϕ(U) and a submanifold of G. This
can be stated as follows:

Theorem 13 ([1])

1. A deformation ϕ(λ) of x0 is versal if, and only if,
it is transversal to the orbit O(x0) at x0.

2. Minimal number of parameters of a versal defor-
mation is equal to the codimension of the orbit of
x0 inM, d = codimO(x0).

Let {v1, . . . , vd} be a basis of any arbitrary com-
plementary subspace (Tx0O(x0))

c to Tx0O(x0) (for
example, (Tx0O(x0))

⊥).

Corollary 14 The deformation

x : U0 ⊂ IRd −→M, x(λ) = x0 +
d∑
i=1

λivi (5)

is a miniversal deformation.

For our particular set-up, the tangent space to the
orbit of the matrix L is the set

{LP − PL, ∀P ∈Mk}

and a complementary space is for example:

{X ∈Mk | LX∗ −X∗L = 0}.

So, we have the following corollary.

Corollary 15 All possible deformations giveen dif-
ferent equivalence classes and preserving the struc-
ture of L is obtained intersecting a miniversal family
with the variety of matrices having the same fixed ze-
ros than the L.

Examples
i) We started showing an example for the case

where the multiagents have identical mode
We consider 3 identical agents with the following

dynamics of each agent

Eẋ1 = Ax1 +Bu1

Eẋ2 = Ax2 +Bu2

Eẋ3 = Ax3 +Bu3
(6)

with E =

(
1 0
0 0

)
A =

(
0 1
0 0

)
and B =(

0
1

)
.

The communication topology is defined by the
graph (V, E):
V = {1, 2, 3}
E = {(i, j) | i, j ∈ V} = {(1, 2), (1, 3)} ⊂ V×V

and the adjacency matrix:

G =

 0 1 1
1 0 0
1 0 0


The neighbors of the parent nodes are N1 =

{2, 3}, N2 = {1}, N3 = {1}.
The Laplacian matrix of the graph is

L =

 2 −1 −1
−1 1 0
−1 0 1


with eigenvalues λ1 = 0, λ2 = 1, λ3 = 3.

Taking into account that 0 is an eigenvalue of L
the associated system 2 is not controllable.

The miniversal (orthogonal) deformation of the
matrix L is given by

L =

ε1 ε2 ε2
ε2 ε3 ε1 + ε2 − ε3
ε2 ε1 + ε2 − ε3 ε3


Intersecting the versal deformation with the vari-

ety defining the structure of matrix L, we obtain

L =

ε1 ε2 ε2
ε2 ε1 + ε2 0
ε2 0 ε1 + ε2

 .
So, taking ε = ε1 and ε2 = 0

L̄ =

 2 + ε −1 −1
−1 1 0
−1 0 1


the new system is controllable, then the system s struc-
turally controlable.
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ii) Considering now, the matrix

L =

0 1 1
0 0 1
0 0 0


The miniversal (orthogonal) deformation of this

matrix is defined as

L+

ε1 ε2 ε3
0 ε1 ε2
0 0 ε1


That intersecting with the variety defining the struc-
ture ofthe matrix L we have

L+

0 ε2 ε3
0 0 ε2
0 0 0

 .

6 Conclusions

In this paper, the structural control properties for
multi-agent systems where all agents have an identical
linear dynamic mode are analyzed.
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