AUTHOR(S): Francisco Carvalho, Roman Zmyślony, J.T. Mexia
|
TITLE |
PDF BIBTEX |
KEYWORDS Typing manuscripts, LATEX |
ABSTRACT |
REFERENCES [1] Carvalho, Francisco; Mexia, Jo˜ao T.; Santos, Carla (2013). Commutative orthogonal block structure and error orthogonal models. Electronic Journal of Linear Algebra. 25, 119–128. [2] Fonseca, M.; Mexia, J. T. and Zmy´slony, R. (2006). Binary operations on Jordan algebras and orthogonal normal models. Linear Algebra and its Applications 417, pp. 75–86. [3] Fonseca, M.; Mexia, J. T.; Zmy´slony, R. (2008). Inference in normal models with commutative orthogonal block structure. Acta et Commentationes Universitatis Tartunesis de Mathematica 12, pp. 3–16. [4] Houtman, A.M. and Speed, T.P. (1983). Balance in Designed Experiments with Orthogonal Block Structure. Annals of Statistics. 11 4, pp. 1069– 1085. [5] Lehmann, E.L. and Casella, G. (1998). Theory of point estimation. Springer. [6] Mexia, J. T.; Vaquinhas, R.; Fonseca, M. and Zmy´slony, R. (2010). COBS: segregation, matching, crossing and nesting, Latest Trends and Applied Mathematics, simulation, Modelling, 4-th International Conference on Applied Mathematics, Simulation, Modelling (ASM’10), pp. 249–255. F. Carvalho et al. International Journal of Mathematical and Computational Methods http://www.iaras.org/iaras/journals/ijmcm ISSN: 2367-895X 163 Volume 1, 2016 [7] Nelder, J.A. (1965a). The Analysis of Randomized Experiments with Orthogonal Block Structure. I - Block Structure and the Null Analysis of Variance. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 283 (1393), pp. 147–162. [8] Nelder, J.A. (1965b). The Analysis of Randomized Experiments with Orthogonal Block Structure. II - Treatment, Structure and the General Analysis of Variance. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 283 (1393), pp. 163–17. [9] Schott, J. R. (1997). Matrix Analysis for Statistics, Wiley Series in Probability and Statistics. John Wiley. [10] Seely, J. (1971). Quadratic subspaces and completeness. The Annals of Mathematical Statistics 42 (2), pp. 710–721. [11] VanLeeuwen, Dawn M.; Birks, David S.; Seely, Justus F.; J. Mills, J.; Greenwood, J. A. and Jones, C. W. (1998). Sufficient conditions for orthogonal designs in mixed linear models. Journal of Statistical Planning and Inference 73, pp. 373–389. [12] Zmy´slony, R. (1980). A characterization of Best Linear Unbiased Estimators in the general linear model. Lecture Notes in Statistics 2, pp. 365– 373. |
Cite this paper Francisco Carvalho, Roman Zmyślony, J.T. Mexia. (2016) Normal models with Orthogonal Block Structure. International Journal of Mathematical and Computational Methods, 1, 159-164 |
|