oalogo2  

AUTHOR(S):

Catrina F. Castro, Carlos C. António, Luísa C. Sousa

 

TITLE

Multi-objective Optimization of Graft Configuration using Genetic Algorithms and Artificial Neural Network

pdf PDF bibtextBIBTEXT

ABSTRACT

Optimization of graft geometric configuration with regard to blood dynamics is the major target of this research. A developed multi-objective genetic algorithm is considered in order to reach optimal graft geometries for idealized arterial bypass systems of fully occluded host arteries. An artificial neural network simulating hemodynamic specific conditions is introduced in order to reduce the genetic search computational time. Input data values are constrained within pre-defined boundaries for graft geometric parameters and the correspondent target values are solutions for blood velocity and shear stress functions calculated with a finite element simulator. Optimal solutions are presented as Pareto fronts covering a range of best possible solutions.

KEYWORDS

Shape optimization, Multi-objective optimization, Genetic algorithms, Artificial Neural Networks, Biomedical engineering.

REFERENCES

[1] A.M. Imparato, A.Bracco, G.E. Kim and R. Zeff, Intimal and neointimal fibrous proliferation causing failure of arterial reconstruction, Surgery, Vol. 72, 1972, pp. 1007-1017. [1] A.M. Imparato, A.Bracco, G.E. Kim and R. Zeff, Intimal and neointimal fibrous proliferation causing failure of arterial reconstruction, Surgery, Vol. 72, 1972, pp. 1007-1017. 

[2] V.S. Sottiurai, J.S.T. Yao, R.C. Batson, S.L. Sue, R.Jones and Y.A. Nakamura, Distal anastomotic intimal hyperplasia: histopathological character and biogenesis, Annals of Vascular Surgery, Vol. 1, 1989, pp. 26–33. 

[3] D.P. Giddens, C.K. Zarins and G. S, The role of fluid mechanics in the localization and detection of atherosclerosis, J. Biomech. Eng., Vol.115, 1993, pp. 588-594. 

[4] D.N. Ku, D.P. Giddens, C.K. Zarins and S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, Vol. 5 (3), 1985, pp. 293-302. 

[5] J.R. Buchanan, C. Kleinstreuer, S. Hyun and G.A. Truskey, Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta, Journal of Biomechanics, Vol. 36, 2003, pp.1185-1196. 

[6] C.F. Castro, C.C. António and L.C. Sousa, Multi-objective optimization of bypass grafts in arteries, in TMSi - Sixth International Conference on Technology and Medical Sciences, Porto, Portugal, 2010. 

[7] C.M. Su, D. Lee, R. Tran-Son-Tay and W. Shyy, Fluid flow structure in arterial bypass anastomosis, J Biomech Eng., Vol. 127 (4), 2005, pp. 611-618. 

[8] A. Qiao and Y. Liu, Medical application oriented blood flow simulation, Clinical Biomechanics, Vol. 23, 2008, pp. S130–S136. 

[9] W. Trubel, H. Schima, A. Moritz, F. Raderer, A. Windisch, R. Ullrich, U. Windberger, U. Losert and P. Polterauer, Compliance mismatch and formation of distal anastomotic intimal hyperplasia in externally stiffened and lumenadapted venous grafts, Eur J Vasc Endovac Surg, Vol. 10, 1995, pp. 415-423. 

[10] C.F. Castro, C.C. António and L.C. Sousa, Optimização da geometria do “bypass” arterial, in Actas do 6º Congresso Luso-Moçambicano de Engenharia, Maputo, Moçambique, 2011. 

[11] L.C. Sousa, C.F. Castro, C.C. António and R. Chaves, Blood flow simulation and vascular reconstruction, Journal of Biomechanics, Vol. 45, 2012, pp. 2549-2555. 

[12] J.D. Schaffer, Multi-objective optimization with vector evaluated genetic algorithms, in Proceedings of the 1st International Conference of Genetic Algorithms, Pittsburgh, PA, USA, 1985. 

[13] A.M. Aragón, J.K. Wayer, P.H. Geubelle, D.E. Goldberg and S.R. White, Design of microvascular flow networks using multiobjective genetic algorithms, Comput. Methods Appl. Mech. Engrg., Vol. 197 (49-50), 2008, pp. 4399–4410. 

[14] L. Sousa, C.F. Castro, C.A. Antonio and R. Chaves, Computational Techniques and Validation of Blood Flow Simulation, WSEAS Transactions on Biology and Biomedicine, Included in ISI/SCI Web of Science and Web of Knowledge, Vol. 4-8, 2011, pp. 145-155. 

[15] M. Probst, M. Lülfesmann, M. Nicolai, H.M. Bücker, M. Behr and C.H. Bischof, Sensitivity of optimal shapes of artificial grafts with respect to flow parameters, Comput. Methods Appl. Mech. Engrg., Vol. 199, 2010, pp.997- 1005. 

[16] M. Probst, M. Lülfesmann, H.M. Bücker, M. Behr and C H. Bischof, Sensitivity of shear rate in artificial grafts using automatic differentiation, Int. J. Numer. Meth. Fluids, Vol. 62, 2010, pp. 1047-1062. 

[17] K. Perktold, M. Hofer, G. Karner, W. Trubel and H. Schima, Computer simulation of vascular fluid dynamics and mass transport: Optimal design of arterial bypass anastomoses, in ECCOMAS 98, Athens, Greece, 1998. 

[18] D. Fei, J.D. Thomas and S.E. Rittgers, The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: A numerical model study, ASME Journal of Biomedical Engineering, Vol. 116, 1994, pp. 331-336. 

[19] K. Perktold, M. Resch and F.H., Pulsatile NonNewtonian Flow Characteristics in a ThreeDimensional Human Carotid Bifurcation Model, ASME J. Biomech. Eng., Vol. 113, 1991, pp. 463–475. 

[20] P. Reymond, F. Perren, F. Lazeyras and N. Stergiopulos, Patient-specific mean pressure drop in the systemic arterial tree, a comparison between 1-D and 3-D models, Journal of Biomechanics, Vol. 45, 2012, pp. 2499-2505. 

[21] H.S. Bassiouny, S. White, S. Glagov, E. Choi, D.P. Giddens and C.K. Zarins, Anastomotic intimal hyperplasia: mechanical injury or flow induced, J. Vas. Surg., Vol. 15, 1992, pp. 708- 716. 

[22] R. Beale and T. Jackson, Neural Computing: An Introduction, Bristol, U.K.: IOP Publishing Ltd., 1990. 

[23] S.S. Cross, R.F. Harrison and R.L. Kennedy, Introduction to neural networks, The Lancet, Vol. 346(8982), 1995, pp.1075-1079. 

[24] S. Haykin, Neural networks: A comprehensive foundation, New York: Macmillan, 1994. 

[25] D.R. Hush and B.G. Horne, Progress in supervised neural networks, IEEE Signal Proc. Magazine, Vol. 10(1), 1993, pp. 8-39. 

[26] R.L. Marler and J.S. Arora, The weighted sum method for multi-objective optimization: new insights, Structural and Multidisciplinary Optimization, Vol. 41(6), 2010, pp. 853-862. 

[27] M. Poursina, C.A.C António, C.F. Castro, J. Parvizian and L.C. Sousa, Preform optimal design in metal forging using genetic algorithms, Engineering Computations (Swansea, Wales), Vol. 21(6), 2004, pp. 631- 650.

Cite this paper

Catrina F. Castro, Carlos C. António, Luísa C. Sousa. (2016) Multi-objective Optimization of Graft Configuration using Genetic Algorithms and Artificial Neural Network. International Journal of Mathematical and Computational Methods, 1, 58-68

 

cc.png
Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0