REFERENCES
[1] A.M. Imparato, A.Bracco, G.E. Kim and R. Zeff, Intimal and neointimal fibrous proliferation causing failure of arterial reconstruction, Surgery, Vol. 72, 1972, pp. 1007-1017. [1] A.M. Imparato, A.Bracco, G.E. Kim and R. Zeff, Intimal and neointimal fibrous proliferation causing failure of arterial reconstruction, Surgery, Vol. 72, 1972, pp. 1007-1017.
[2] V.S. Sottiurai, J.S.T. Yao, R.C. Batson, S.L. Sue, R.Jones and Y.A. Nakamura, Distal anastomotic intimal hyperplasia: histopathological character and biogenesis, Annals of Vascular Surgery, Vol. 1, 1989, pp. 26–33.
[3] D.P. Giddens, C.K. Zarins and G. S, The role of fluid mechanics in the localization and detection of atherosclerosis, J. Biomech. Eng., Vol.115, 1993, pp. 588-594.
[4] D.N. Ku, D.P. Giddens, C.K. Zarins and S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, Vol. 5 (3), 1985, pp. 293-302.
[5] J.R. Buchanan, C. Kleinstreuer, S. Hyun and G.A. Truskey, Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta, Journal of Biomechanics, Vol. 36, 2003, pp.1185-1196.
[6] C.F. Castro, C.C. António and L.C. Sousa, Multi-objective optimization of bypass grafts in arteries, in TMSi - Sixth International Conference on Technology and Medical Sciences, Porto, Portugal, 2010.
[7] C.M. Su, D. Lee, R. Tran-Son-Tay and W. Shyy, Fluid flow structure in arterial bypass anastomosis, J Biomech Eng., Vol. 127 (4), 2005, pp. 611-618.
[8] A. Qiao and Y. Liu, Medical application oriented blood flow simulation, Clinical Biomechanics, Vol. 23, 2008, pp. S130–S136.
[9] W. Trubel, H. Schima, A. Moritz, F. Raderer, A. Windisch, R. Ullrich, U. Windberger, U. Losert and P. Polterauer, Compliance mismatch and formation of distal anastomotic intimal hyperplasia in externally stiffened and lumenadapted venous grafts, Eur J Vasc Endovac Surg, Vol. 10, 1995, pp. 415-423.
[10] C.F. Castro, C.C. António and L.C. Sousa, Optimização da geometria do “bypass” arterial, in Actas do 6º Congresso Luso-Moçambicano de Engenharia, Maputo, Moçambique, 2011.
[11] L.C. Sousa, C.F. Castro, C.C. António and R. Chaves, Blood flow simulation and vascular reconstruction, Journal of Biomechanics, Vol. 45, 2012, pp. 2549-2555.
[12] J.D. Schaffer, Multi-objective optimization with vector evaluated genetic algorithms, in Proceedings of the 1st International Conference of Genetic Algorithms, Pittsburgh, PA, USA, 1985.
[13] A.M. Aragón, J.K. Wayer, P.H. Geubelle, D.E. Goldberg and S.R. White, Design of microvascular flow networks using multiobjective genetic algorithms, Comput. Methods Appl. Mech. Engrg., Vol. 197 (49-50), 2008, pp. 4399–4410.
[14] L. Sousa, C.F. Castro, C.A. Antonio and R. Chaves, Computational Techniques and Validation of Blood Flow Simulation, WSEAS Transactions on Biology and Biomedicine, Included in ISI/SCI Web of Science and Web of Knowledge, Vol. 4-8, 2011, pp. 145-155.
[15] M. Probst, M. Lülfesmann, M. Nicolai, H.M. Bücker, M. Behr and C.H. Bischof, Sensitivity of optimal shapes of artificial grafts with respect to flow parameters, Comput. Methods Appl. Mech. Engrg., Vol. 199, 2010, pp.997- 1005.
[16] M. Probst, M. Lülfesmann, H.M. Bücker, M. Behr and C H. Bischof, Sensitivity of shear rate in artificial grafts using automatic differentiation, Int. J. Numer. Meth. Fluids, Vol. 62, 2010, pp. 1047-1062.
[17] K. Perktold, M. Hofer, G. Karner, W. Trubel and H. Schima, Computer simulation of vascular fluid dynamics and mass transport: Optimal design of arterial bypass anastomoses, in ECCOMAS 98, Athens, Greece, 1998.
[18] D. Fei, J.D. Thomas and S.E. Rittgers, The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: A numerical model study, ASME Journal of Biomedical Engineering, Vol. 116, 1994, pp. 331-336.
[19] K. Perktold, M. Resch and F.H., Pulsatile NonNewtonian Flow Characteristics in a ThreeDimensional Human Carotid Bifurcation Model, ASME J. Biomech. Eng., Vol. 113, 1991, pp. 463–475.
[20] P. Reymond, F. Perren, F. Lazeyras and N. Stergiopulos, Patient-specific mean pressure drop in the systemic arterial tree, a comparison between 1-D and 3-D models, Journal of Biomechanics, Vol. 45, 2012, pp. 2499-2505.
[21] H.S. Bassiouny, S. White, S. Glagov, E. Choi, D.P. Giddens and C.K. Zarins, Anastomotic intimal hyperplasia: mechanical injury or flow induced, J. Vas. Surg., Vol. 15, 1992, pp. 708- 716.
[22] R. Beale and T. Jackson, Neural Computing: An Introduction, Bristol, U.K.: IOP Publishing Ltd., 1990.
[23] S.S. Cross, R.F. Harrison and R.L. Kennedy, Introduction to neural networks, The Lancet, Vol. 346(8982), 1995, pp.1075-1079.
[24] S. Haykin, Neural networks: A comprehensive foundation, New York: Macmillan, 1994.
[25] D.R. Hush and B.G. Horne, Progress in supervised neural networks, IEEE Signal Proc. Magazine, Vol. 10(1), 1993, pp. 8-39.
[26] R.L. Marler and J.S. Arora, The weighted sum method for multi-objective optimization: new insights, Structural and Multidisciplinary Optimization, Vol. 41(6), 2010, pp. 853-862.
[27] M. Poursina, C.A.C António, C.F. Castro, J. Parvizian and L.C. Sousa, Preform optimal design in metal forging using genetic algorithms, Engineering Computations (Swansea, Wales), Vol. 21(6), 2004, pp. 631- 650.
|