Efrén García-Ordiales, Jorge Loredo, José M. Esbrí, Pablo Higueras, Nieves Roqueñí, Pablo Cienfuegos



Impact of Dissolved Metals(oids) in Surface Water Quality of the Almadén Mine District

pdf PDF


Waters from 10 sampling points in the streams of the Almad?n mine district were collected in the period 2010-2013 in order to study the potential impact caused by the input of Potentially Toxic or Harmful Elements (PTHE) from the decommissioned mines of the district in the freshwater environment and then the potential risk for the aquatic organism and to the resident population. Dissolved metals(oids) in surface waters were investigated byby different analytical techniques and the results were statistical evaluated using Principal Component Analysis (PCA). The assessment of the potential risk for biota and humans using the Environmental Risk Index (ERI) and the Hazard quotient (HQ) has been made. Considering the different physico-chemical data together with their statistical multivariate treatment, the district displayed a significant metals load where the main PTHE (As, Co, Hg and Mn) may be attributed to the decommissioned mine sources. The amount of dissolved metals detected in the surface waters showed an ERI value of 11.64, corresponding to a poor environment where different metals(oids) may be transferred to the aquatic organisms. On the other hand, the assessment of the same metal load from the viewpoint of human consumption showed that the contents of Hg and As are potentially hazardous for the resident populations, where they can cause adverse health effects in sensitive populations such as children or babies.


Decommissioned mining, mercury, surface waters, pollution, risk assessment, Almadén district


[1] Cukrov, N., Cmuk, P., Mlakar, M., & Omanović, D. Spatial distribution of trace metals in the Krka River, Croatia: an example of the self-purification. Chemosphere, Vol. 72, No. 10, 2008, pp. 1559-1566. [1] Cukrov, N., Cmuk, P., Mlakar, M., & Omanović, D. Spatial distribution of trace metals in the Krka River, Croatia: an example of the self-purification. Chemosphere, Vol. 72, No. 10, 2008, pp. 1559-1566. 

[2] Li, Y., Liu, J., Cao, Z., Lin, C., & Yang, Z. Spatial distribution and health risk of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the water of the Luanhe River Basin, China. Environ. Monit. Assess., Vol. 163, No. 1-4, 2010, pp. 1-13. 

[3] Varol, M. Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere, Vol. 93, No. 6, 2013, pp. 954-962. 

[4] Squadrone, S., Burioli, E., Monaco, G., Koya, M. K., Prearo, M., Gennero, S., ... & Abete, M. C. Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (DR Congo). Sci. Tot. Environ., 2016, Doi:10.1016/j.scitotenv.2016.02.167. 

[5] Alpers, C. N., Yee, J. L., Ackerman, J. T., Orlando, J. L., Slotton, D. G., MarvinDiPasquale, M. C. Prediction of fish and sediment mercury in streams using landscape variables and historical mining. Sci. Tot. Environ., 2016, doi:10.1016/j.scitotenv.2016.05.088 

[6] Puche, O. Mecanismos estructurales de los volcanismos paleozoicos en la región Alcudiense. PhD Thesis Universidad Politecnica de Madrid (in Spanish), 1989, pp. 472. 

[7] Palero, F.J. Evolución Geotectónica y Yacimientos Minerales de la Región del Valle de Alcudia (Sector Meridional de la Zona Centroibérica). PhD Thesis Universidad de Salamanca (in Spanish), 1991, pp. 827. 

[8] Palero, F., Lorenzo, S. Mercury mineralization in the region of Almadén. García-Cortés, A., Agueda-Villar, J., Palacio Suárez-Valgrande, J., Salvador González, CI (Eds.), Spanish Geological Frameworks and Geosites: An Approach to Spanish Geological Heritage of International Relevance. Ins. Geol. Min. Esp., 2009, pp. 65-72. 

[9] Higueras, P., Oyarzun, R., Lillo, J., Morata, D. Intraplate mafic magmatism, degasification, and deposition of mercury: the giant Almadén mercury deposit (Spain) revisited. Ore Geol. Rev., Vol. 51, 2013, pp. 93–102. 

[10] Berzas Nevado, J.J., Bermejo, L.G., Martı́ n - Doimeadios, R.R. Distribution of mercury in the aquatic environment at Almaden, Spain. Environ. Pollut., Vol. 122, 2003, pp. 261–271. 

[11] Gray, J.E., Hines, M.E., Higueras, P.L., Adatto, I., Lasorsa, B.K. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén Mining District, Spain. Environ. Sci. Technol., Vol. 38, 2004, pp. 4285–4292. 

[12] Millán, R., Lominchar, M.A,, RodríguezAlonso, J., Schmid, T., Sierra, M.J. Riparian vegetation role in mercury uptake (Valdeazogues River, Almadén, Spain). J Geochem. Explor., Vol. 140, 2014, pp. 104– 110. 

[13] García-Ordiales, E., Loredo, J., Esbrí, J.M., Lominchar, M.A., Millán, R., Higueras, P. Stream bottom sediments as a mean to assess metal contamination in the historic mining district of Almadén (Spain). Int J Min Reclam Environ., Vol. 28, No. 6, 2014, pp.377–388 

[14] Hernández, A., Jébrak, M., Higueras, P., Oyarzun, R., Morata, D., Munhá, J. The Almadén mercury mining district. Spain Miner Deposita, Vol. 34, 1999, pp. 539–548. 

[15] Schimd, T., Millán, R., Vera, R., Tallos, A., Recreo, F., Quejido, A., Sánchez, M.D., Fernández, M. The distribution of Mercury in a characterized soils affected by mining activities. 8th International FZK/TNO Conference on contaminated soil. (Consoil 2003). Conference Proccedings. 2003, pp. 328- 329. 

[16] Brockhoff, C. A., Creed, J. T., Martin, T. D., Martin, E. R., & Long, S. E. EPA Method 200.8, Revision 5.5: Determination of trace metals in waters and wastes by inductively coupled plasma-mass spectrometry (Vol. 61). EPA-821R-99-017, 1999. 

[17] Rapant, S., Kordík, J. An environmental risk assessment map of the Slovak Republic: application of data from geochemical atlases. Environ. Geo. Vol. l, No. 44, 2003, pp. 400– 407. 

[18] Rapant, S., Dietzová, Z., & Cicmanová, S. Environmental and health risk assessment in abandoned mining area, Zlata Idka, Slovakia. Environ. Geol., Vol. 51, No. 3, 2006, pp. 387-397. 

[19] Rapant, S., Salminen, R., Tarvainen, T., Krmová, K., Cveková, V. (2008). Application of a risk assessment method to Europe-wide geochemical baseline data. Geochem. Explor. Environ. Anal., Vol. 8, 2008, pp. 291–299 

[20] Rapant, S., Bodiš, D., Vrana, K., Cvečková, V., Kordík, J., Krčmová, K., et al. Geochemical Atlas of Slovakia and examples of its applications to environmental problems. Environ. Geol. Vol. 57, 2009, pp. 99-110. 

[21] Huang, X., Sillanpää, M., Gjessing, E. T., Peräniemi, S., & Vogt, R. D. Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Sci. Total Environ., Vol. 408, No. 19, 2010, pp. 4177- 4184. 

[22] US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005 OSWER 9285.7-02EP PB99-963312 July 2004,Office of Superfund Remediation and Technology Innovation U.S. Environmental Protection Agency Washington, DC, 2004. 

[23] Rodriguez-Proteau1, R., Grant, R.L. Toxicity evaluation and human health risk assessment of surface and ground water contaminated by recycled hazardous waste materials, Handb. Environ. Chem. Vol. 5, Part F, No. 2, 2005, pp. 133–189. 

[24] Wu, B., Zhao, D. Y., Jia, H. Y., Zhang, Y., Zhang, X. X., & Cheng, S. P. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. B. Environ. Contam. Tox., Vol. 82, No. 4, 2009, pp. 405-409. 

[25] U.S. EPA. Exposure Factors Handbook 2011 Edition (Final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R09/052F, 2011. 

[26] Liu, L., Hawkins,D.M., Ghosh,S. and Young,S.S. Robust singular value decomposition analysis of microarray data. Proc. Natl. Acad. Sci. U. S. A., Vol. 100, 2003, pp. 13167-13172. 

[27] Smith AH, Goycolea M, Haque R, Biggs ML. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am J Epidemiol., Vol. 147, 1998, pp. 660–669. 

[28] Morales KH, Ryan L, Kuo TL, Wu MM, Chen CJ. Risk of internal cancers from arsenic in drinking water. Environ. Health Persp., Vol. 108, 2000, pp. 655–666. 

[29] Kazantzis, G. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis. Environ. Health Persp., Vol. 40, 1981, pp. 143. 

[30] Garcia-Ordiales, E., Loredo, J., Covelli, S., Esbrí, J. M., Millán, R., & Higueras, P. Trace metal pollution in freshwater sediments of the world’s largest mercury mining district: sources, spatial distribution, and environmental implications. Journal of Soils and Sediments, 2016, DOI 10.1007/s11368-016-1503-5.

Cite this paper

Efrén García-Ordiales, Jorge Loredo, José M. Esbrí, Pablo Higueras, Nieves Roqueñí, Pablo Cienfuegos. (2016) Impact of Dissolved Metals(oids) in Surface Water Quality of the Almadén Mine District. Environmental Science, 1, 204-212


Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0