REFERENCES
[1] Cukrov, N., Cmuk, P., Mlakar, M., & Omanović, D. Spatial distribution of trace metals in the Krka River, Croatia: an example of the self-purification. Chemosphere, Vol. 72, No. 10, 2008, pp. 1559-1566. [1] Cukrov, N., Cmuk, P., Mlakar, M., & Omanović, D. Spatial distribution of trace metals in the Krka River, Croatia: an example of the self-purification. Chemosphere, Vol. 72, No. 10, 2008, pp. 1559-1566.
[2] Li, Y., Liu, J., Cao, Z., Lin, C., & Yang, Z. Spatial distribution and health risk of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the water of the Luanhe River Basin, China. Environ. Monit. Assess., Vol. 163, No. 1-4, 2010, pp. 1-13.
[3] Varol, M. Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere, Vol. 93, No. 6, 2013, pp. 954-962.
[4] Squadrone, S., Burioli, E., Monaco, G., Koya, M. K., Prearo, M., Gennero, S., ... & Abete, M. C. Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (DR Congo). Sci. Tot. Environ., 2016, Doi:10.1016/j.scitotenv.2016.02.167.
[5] Alpers, C. N., Yee, J. L., Ackerman, J. T., Orlando, J. L., Slotton, D. G., MarvinDiPasquale, M. C. Prediction of fish and sediment mercury in streams using landscape variables and historical mining. Sci. Tot. Environ., 2016, doi:10.1016/j.scitotenv.2016.05.088
[6] Puche, O. Mecanismos estructurales de los volcanismos paleozoicos en la región Alcudiense. PhD Thesis Universidad Politecnica de Madrid (in Spanish), 1989, pp. 472.
[7] Palero, F.J. Evolución Geotectónica y Yacimientos Minerales de la Región del Valle de Alcudia (Sector Meridional de la Zona Centroibérica). PhD Thesis Universidad de Salamanca (in Spanish), 1991, pp. 827.
[8] Palero, F., Lorenzo, S. Mercury mineralization in the region of Almadén. García-Cortés, A., Agueda-Villar, J., Palacio Suárez-Valgrande, J., Salvador González, CI (Eds.), Spanish Geological Frameworks and Geosites: An Approach to Spanish Geological Heritage of International Relevance. Ins. Geol. Min. Esp., 2009, pp. 65-72.
[9] Higueras, P., Oyarzun, R., Lillo, J., Morata, D. Intraplate mafic magmatism, degasification, and deposition of mercury: the giant Almadén mercury deposit (Spain) revisited. Ore Geol. Rev., Vol. 51, 2013, pp. 93–102.
[10] Berzas Nevado, J.J., Bermejo, L.G., Martı́ n - Doimeadios, R.R. Distribution of mercury in the aquatic environment at Almaden, Spain. Environ. Pollut., Vol. 122, 2003, pp. 261–271.
[11] Gray, J.E., Hines, M.E., Higueras, P.L., Adatto, I., Lasorsa, B.K. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén Mining District, Spain. Environ. Sci. Technol., Vol. 38, 2004, pp. 4285–4292.
[12] Millán, R., Lominchar, M.A,, RodríguezAlonso, J., Schmid, T., Sierra, M.J. Riparian vegetation role in mercury uptake (Valdeazogues River, Almadén, Spain). J Geochem. Explor., Vol. 140, 2014, pp. 104– 110.
[13] García-Ordiales, E., Loredo, J., Esbrí, J.M., Lominchar, M.A., Millán, R., Higueras, P. Stream bottom sediments as a mean to assess metal contamination in the historic mining district of Almadén (Spain). Int J Min Reclam Environ., Vol. 28, No. 6, 2014, pp.377–388
[14] Hernández, A., Jébrak, M., Higueras, P., Oyarzun, R., Morata, D., Munhá, J. The Almadén mercury mining district. Spain Miner Deposita, Vol. 34, 1999, pp. 539–548.
[15] Schimd, T., Millán, R., Vera, R., Tallos, A., Recreo, F., Quejido, A., Sánchez, M.D., Fernández, M. The distribution of Mercury in a characterized soils affected by mining activities. 8th International FZK/TNO Conference on contaminated soil. (Consoil 2003). Conference Proccedings. 2003, pp. 328- 329.
[16] Brockhoff, C. A., Creed, J. T., Martin, T. D., Martin, E. R., & Long, S. E. EPA Method 200.8, Revision 5.5: Determination of trace metals in waters and wastes by inductively coupled plasma-mass spectrometry (Vol. 61). EPA-821R-99-017, 1999.
[17] Rapant, S., Kordík, J. An environmental risk assessment map of the Slovak Republic: application of data from geochemical atlases. Environ. Geo. Vol. l, No. 44, 2003, pp. 400– 407.
[18] Rapant, S., Dietzová, Z., & Cicmanová, S. Environmental and health risk assessment in abandoned mining area, Zlata Idka, Slovakia. Environ. Geol., Vol. 51, No. 3, 2006, pp. 387-397.
[19] Rapant, S., Salminen, R., Tarvainen, T., Krmová, K., Cveková, V. (2008). Application of a risk assessment method to Europe-wide geochemical baseline data. Geochem. Explor. Environ. Anal., Vol. 8, 2008, pp. 291–299
[20] Rapant, S., Bodiš, D., Vrana, K., Cvečková, V., Kordík, J., Krčmová, K., et al. Geochemical Atlas of Slovakia and examples of its applications to environmental problems. Environ. Geol. Vol. 57, 2009, pp. 99-110.
[21] Huang, X., Sillanpää, M., Gjessing, E. T., Peräniemi, S., & Vogt, R. D. Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Sci. Total Environ., Vol. 408, No. 19, 2010, pp. 4177- 4184.
[22] US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005 OSWER 9285.7-02EP PB99-963312 July 2004,Office of Superfund Remediation and Technology Innovation U.S. Environmental Protection Agency Washington, DC, 2004.
[23] Rodriguez-Proteau1, R., Grant, R.L. Toxicity evaluation and human health risk assessment of surface and ground water contaminated by recycled hazardous waste materials, Handb. Environ. Chem. Vol. 5, Part F, No. 2, 2005, pp. 133–189.
[24] Wu, B., Zhao, D. Y., Jia, H. Y., Zhang, Y., Zhang, X. X., & Cheng, S. P. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. B. Environ. Contam. Tox., Vol. 82, No. 4, 2009, pp. 405-409.
[25] U.S. EPA. Exposure Factors Handbook 2011 Edition (Final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R09/052F, 2011.
[26] Liu, L., Hawkins,D.M., Ghosh,S. and Young,S.S. Robust singular value decomposition analysis of microarray data. Proc. Natl. Acad. Sci. U. S. A., Vol. 100, 2003, pp. 13167-13172.
[27] Smith AH, Goycolea M, Haque R, Biggs ML. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am J Epidemiol., Vol. 147, 1998, pp. 660–669.
[28] Morales KH, Ryan L, Kuo TL, Wu MM, Chen CJ. Risk of internal cancers from arsenic in drinking water. Environ. Health Persp., Vol. 108, 2000, pp. 655–666.
[29] Kazantzis, G. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis. Environ. Health Persp., Vol. 40, 1981, pp. 143.
[30] Garcia-Ordiales, E., Loredo, J., Covelli, S., Esbrí, J. M., Millán, R., & Higueras, P. Trace metal pollution in freshwater sediments of the world’s largest mercury mining district: sources, spatial distribution, and environmental implications. Journal of Soils and Sediments, 2016, DOI 10.1007/s11368-016-1503-5.
|