Heimo Walter, Natalie Strohmayer, Michael Hameter



One Dimensional Mathematical Model for a Thermocline Energy Storage Device

pdf PDF


The rapid rise of highly fluctuating renewables leads to challenges for power plants and power grids. Thermal energy storage is envisaged for e.g. enhancing the low load capabilities and plant dynamics of thermal power plants. As state of the art heat storage media like molten salts are rather expensive and furthermore limited due to their temperature range. In contrast a thermocline energy storage (TES) device is a cost efficient method to store thermal energy. Therefore a great interest is given on this technology. For time dependent studies of the integration of such a storage unit in complex energy systems a mathematical model is necessary. The model should be simple as possible to reduce the computation time for solving the algebraic equations of the model. The objective of the paper is to present experimental data as well as a one-dimensional model for a thermocline energy storage unit. The measurements are done for a charging and discharging process. During the experiments the temperature and the mass flow of the heat transfer fluid (HTF) and also the temperature distribution within the storage device was measured. For the time dependent TES model the energy balance for the storage mass and also for the heat transfer fluid (HTF) are discretised based on the finite volume approach. The measured HTF mass flow and entrance temperature into the TES are used as boundary condition for the simulation. The simulation results for the charging and discharging process of the TES test rig show a good agreement with the measured data.


Thermocline, thermal energy storage, mathematical model, finite volume


[1] S. Ould Amrouche, D. Rekioua, T. Rekioua, and S. Bacha, Overview of energy storage in renewable energy systems, International Journal of Hydrogen Energy, Vol. 41, No. 45, 2016, pp. 20914 – 20927.

[2] S. Aissou, D. Rekioua, N. Mezzai, T. Rekioua and, S. Bacha, Modeling and control of hybrid photovoltaic wind power system with battery storage, Energy Conversion and Management, Vol. 89, 2015, pp. 615 – 625.

[3] A. De Gracia and L. F. Cabeza, Phase change materials and thermal energy storage for buildings, Energy Build, Vol. 103 2015; pp. 414 - 419.

[4] P. Steiner, K. Schwaiger, M. Haider, and H. Walter: System analysis of central receiver concepts with high temperature thermal energy storages: Receiver technologies and storage cycles, AIP Conference Proceedings - American Institute of Physics, Vol. 1850, 2017, pp. 110015-1 - 110015-8.

[5] Guruprasad Alva, Yaxue Lin, and Guiyin Fang, An overview of thermal energy storage systems, Energy, Vol. 144, 2018, pp. 341 – 378.

[6] V. Becattini, L. Geissbühler, G. Zanganeh, A. Haselbacher, and A. Steinfeld, Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 2: Tests with combined sensible/latent thermal-energy storage, Journal of Energy Storage, Vol. 17, 2018, pp. 140 – 152.

[7] C. Bauer, E. Doujak. Aktueller Stand zur Entwicklung einer modularen Pumpturbine im niedrigen Leistungsbereich. Wasserwirtschaft, Vol. 107, No. 10, 2017, pp. 54 – 58.

[8] S. Flegkas, F. Birkelbach, F. Winter, N. Freiberger, and A. Werner, Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations, Energy, Vol. 143, 2018, pp. 615 – 623.

[9] F. Mayrhuber, H. Walter, and M. Hameter, Experimental and Numerical Investigation on a Fixed Bed Regenerator, in: "Proceedings of the 10th International Conference on Sustainable Energy and Environmental Protection", University of Maribor Press, (2017), Bled, Slovenia; 27.06.2017 - 30.06.2017, pp. 14.

[10] C. Zauner, F. Hengstberger, B. Mörzinger, R. Hofmann, and H. Walter, Experimental characterization and simulation of a hybrid sensible-latent heat storage, Applied Energy, Vol. 189, 2017, pp. 506 - 519.

[11] M. Koller, H. Walter, and M. Hameter, Transient Numerical Simulation of the Melting and Solidification Behavior of NaNO3 Using a Wire Matrix for Enhancing the Heat Transfer, Energies, Vol. 9, No. 205, 2016, pp. 1 - 18.

[12] H. Walter, A. Beck, and M. Hameter, Influence of the Fin Design on the Melting and Solidification Process of NaNO3 in a Thermal Energy Storage System, Journal of Energy and Power Engineering, Vol. 9, No. 11, 2015, pp. 913 - 928.

[13] M. Deutsch, F. Birkelbach, C. Knoll, M. Harasek, A. Werner, and F. Winter, An extension of the NPK method to include the pressure dependency of solid state reactions, Thermochimica Acta, Vol. 654, 2017, pp. 168 - 178.

[14] M. Prenzel, V. Danov, S. Will, L. Zigan, T. Barmeier, J. Schäfer, Thermo-fluid dynamic model for horizontal packed bed thermal energy storages, Energy Procedia, Vol. 135, 2017, pp. 51- 61.

[15] D. Brosseau, J. W. Kelton, M. Edgar, K. Chisman, and B. Emms, Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants, Transaction of ASME Journal of Solar Energy Engineering, Vol. 127, 2005 pp. 109 – 116.

[16] E. P. R. Institute, Solar Thermocline Storage Systems: Preliminary Design Study, Tech. Rep. 1019581, Electric Power Research Institute, 2010.

[17] H. P. Garg, S. C. Mullick, A. K. Bhargava, Solar Thermal Energy Storage, D. Reidel, Publishing Company, Dordrecht, 1985.

[18] T. Schumann, Heat transfer: a liquid flowing through a porous prism, Journal of the Franklin Institute, Vol. 208, 1929, pp. 405 – 416.

[19] J. Coutier, E. Farber, Two applications of a numerical approach of heat-transfer process within rock beds, Solar Energy, Vol. 29, No. 6, pp. 451-462, 1982.

[20] K. Ismail, R. Stuginsky, A parametric study on possible fixed bed models for pcm and sensible heat storage, Applied Thermal Engineering, Vol. 19, No. 7, 1999, pp. 757 - 788.

[21] H. Bindra, P. Bueno, J. F. Morris, R. Shinnar, Thermal analysis and exergy evaluation of packed bed thermal storage systems, Applied Thermal Engineering, Vol. 52, No. 2, 2013, pp. 255 – 263.

[22] H. Bindra, P. Bueno, J. F. Morris, R. Shinnar, Sliding flow method for exergetically efficient packed bed thermal storage, Applied Thermal Engineering, Vol. 64, 2014, pp. 201 – 208.

[23] P. Drochter, Design, construction and errection of a fixed bed regenerator, MS-thesis, TU-Wien, 2016 (in German).

[24] N. Wakao, S. Kaguei, T. Fuazkri, Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds, Chemical Engineering Science, Vol. 34, pp. 325-336, 1979.

[25] S. R. P. H. Singh, J. Saini, Performance of a packed bed solar energy storage system having large sized elements with low void fraction, Solar Energy, Vol. 87, pp. 22-34, 2013.

[26] V. Gnielinski, Wärme- und Stoffüber-tragung in Festbetten, Chemie Ingenieur Technik, Vol. 52, No.: 3, 1980, pp. 228 – 236.

[27] M. Hänchen, S. Brückner, A. Steinfeld, High-temperature thermal storage using a packed bed of rocks e heat transfer analysis and experimental validation, Applied Thermal Engineering, Vol. 31, 2011, pp. 1798 – 1806.

[28] F. Mayrhuber, H. Walter, M. Hameter, Experimental and numerical investigation on a fixed bed regenerator, Proceedings of the 10th International Conference on Sustainable Energy and Environmental Protection, University of Maribor Press, 2017.

[29] K. Vafai, M. Sözen, Analysis of energy and momentum transport for fluid flow through a porous bed, Journal of Heat Transfer, Vol. 112, pp. 690-699, 1990.

[30] M. Hänchen, S. Brückner and A. Steinfeld, High-temperature thermal storage using a packed bed of rocks – heat transfer analysis and experimental validation, Applied Thermal Engineering, Vol. 31, Nr.10, 2011 pp. 1798-1806.

[31] F. Brandt, Wärmeübertragung in Dampf-erzeugern und Wärmeaustauschern. 2. edn. Vulkan, 1995. •

[32] M. Heinrich, Bundesweite Übersicht zum Forschungsstand der Massenrohstoffe Kies, Kiessand, Brecherprodukte und Bruchsteine für das Bauwesen hinsichtlich der Vorkommen, der Abbaubetriebe und der Produktion sowie des Verbrauches - Niederösterreich, Wien und Burgenland, interim report Projekt ÜLG 26/1990, Berichte der Geologischen Bundesanstalt, Heft 29, 1995.

[33] V. Cermak, H. G. Huckenholz, L. Rybach, R. Schmid, J. R. Schopper, M. Schuch, D. Stöffler, J. Wohlenberg: Landtolt-Börnstein – Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Gruppe V Geophysik und Weltraumforschung, Volume 1 Physikalische Eigenschaften der Gesteine, Springer Verlag, Berlin Heidelberg, 1982.

[34] K. Kelley, Contribution to the data on theoretical metallurgy: XIII. high-temperature heat-content, heat-capacity, and entropy data for the elements and inorganic compounds, U.S. Government Printing Office, Washington, 1960.

[35] G. Zanganeh, A. Pedretti, S. Zavattoni, M. Barbato, A. Steinfeld, Packed-bed thermal storage for concentrated solar power – Pilot-scale demonstration and industrial-scale design, Solar Energy, vol. 86, pp. 3084-3098, 2012.

[36] W. H. Somerton, Thermal properties and temperature-related behaviour of rock/fluid systems, series in Developments in Petroleum Science, Elsevier, vol. 37, 1st. edition 1992.

Cite this paper

Heimo Walter, Natalie Strohmayer, Michael Hameter. (2018) One Dimensional Mathematical Model for a Thermocline Energy Storage Device. International Journal of Mechanical Engineering, 3, 75-82


Copyright © 2018 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0