Beatriz Nathalia Serrato Panqueba, Carlos Arturo Castillo Medina



Colombia Land of Opportunities to Apply Precision Agriculture: An Overview

pdf PDF


In Colombia, innovation is an aspect of fundamental importance to increase the country’s productivity and so it is imperative to promote new ideas, particularly in agriculture sector, where technological developments may lead to the implementation of modern techniques within the production cycle of crops (replacing more traditional, less efficient processes). In this regard, the use of ICT (Information and Communication Technology) and, more specifically, the introduction of IoT (Internet of Things) as a supporting element of the so called Precision Agriculture (PA) is crucial to ensure productivity in crop fields. The present paper shows evidence of a significant productivity increase, based on growth control, achieved by using technological tools that reduce weed volumes around target crops. A set of good practices carried out in specific areas of the world is reported so as to provide an overview of the existing techniques intended to control weeds in different types of fields and under different climate conditions. Subsequently, the paper discusses a survey of the current technological developments in the agricultural sector in Colombia. The discussion ultimately outlines the proper conditions to promote the development of technology-based projects that offer efficient solutions and contribute to the welfare of a specific target population, namely the peasant farmers of Colombia.


Precision Agriculture, Internet of Things, weed control, climatic change, Information and Communication Technology, fertilizer


[1] J. Dengler, M. Janišová, P. Török, y C. Wellstein, «Biodiversity of Palaearctic grasslands: a synthesis», Biodivers. Palaearct. Grassl. Process. Patterns Conserv., vol. 182, n.o 0, pp. 1-14, ene. 2014.

[2] C. Palm, H. Blanco-Canqui, F. DeClerck, L. Gatere, y P. Grace, «Conservation agriculture and ecosystem services: An overview», Eval. Conserv. Agric. Small-Scale Farmers Sub-Sahar. Afr. South Asia, vol. 187, n.o 0, pp. 87-105, abr. 2014.

[3] A. de la Torre, T. Didier, A. Ize, D. Lederman, y S. L. Schmukler, América Latina y el ascenso del Sur. Washington, DC.: Banco Mundial, 2015.

[4] OECD, «OECD Review of Agricultural Policies: Colombia 2015», 2015.

[5] H. Mousazadeh, «A technical review on navigation systems of agricultural autonomous off-road vehicles», J. Terramechanics, vol. 50, n.o 3, pp. 211-232, jun. 2013.

[6] M. C. Paré, J. Lafond, y D. Pageau, «Best management practices in Northern agriculture: A twelve-year rotation and soil tillage study in Saguenay–Lac-Saint-Jean», Soil Tillage Res., vol. 150, n.o 0, pp. 83-92, jul. 2015.

[7] C. Tardif-Paradis, M.-J. Simard, G. D. Leroux, B. Panneton, R. E. Nurse, y A. Vanasse, «Effect of planter and tractor wheels on row and inter-row weed populations», Crop Prot., vol. 71, n.o 0, pp. 66-71, may 2015.

[8] J. Primicerio, S. F. Di Gennaro, E. Fiorillo, L. Genesio, E. Lugato, A. Matese, y F. P. Vaccari, «A flexible unmanned aerial vehicle for precision agriculture», Precis. Agric., vol. 13, n.o 4, pp. 517-523, ago. 2012.

[9] Y.-J. Huang y F.-F. Lee, «An automatic machine visionguided grasping system for Phalaenopsis tissue culture plantlets», Comput. Electron. Agric., vol. 70, n.o 1, pp. 42- 51, ene. 2010.

[10] Apráez Guerrero, J E. y Gálvez Cerón, A., «Determination of soil and climate factors influencing the production and quality of Kikuyu grass (Pennisetum clandestinum) under conditions of non-intervention», Livest. Res. Rural Dev., vol. 3, n.o 24, 2012.

[11] P. Török, T. Miglécz, O. Valkó, A. Kelemen, K. Tóth, S. Lengyel, y B. Tóthmérész, «Fast restoration of grassland vegetation by a combination of seed mixture sowing and low- diversity hay transfer», Ecol. Eng., vol. 44, n.o 0, pp. 133-138, jul. 2012.

[12] J. B. Florindo, N. R. da Silva, L. M. Romualdo, F. de Fátima da Silva, P. H. de Cerqueira Luz, V. R. Herling, y O. M. Bruno, «Brachiaria species identification using imaging techniques based on fractal descriptors», Comput. Electron. Agric., vol. 103, n.o 0, pp. 48-54, abr. 2014.

[13] X. Wu, W. Xu, Y. Song, y M. Cai, «A Detection Method of Weed in Wheat Field on Machine Vision», CEIS 2011, vol. 15, n.o 0, pp. 1998-2003, 2011.

[14] N. Colbach, A. Collard, S. H. M. Guyot, D. Mézière, y N. Munier-Jolain, «Assessing innovative sowing patterns for integrated weed management with a 3D crop:weed competition model», Eur. J. Agron., vol. 53, n.o 0, pp. 74- 89, feb. 2014.

[15] S. J. Nanda y G. Panda, «A survey on nature inspired metaheuristic algorithms for partitional clustering», Swarm Evol. Comput., vol. 16, n.o 0, pp. 1-18, jun. 2014.

[16] S. Chowdhury, B. Verma, y D. Stockwell, «A novel texture feature based multiple classifier technique for roadside vegetation classification», Expert Syst. Appl., vol. 42, n.o 12, pp. 5047-5055, jul. 2015.

[17] J. Romeo, G. Pajares, M. Montalvo, J. M. Guerrero, M. Guijarro, y J. M. de la Cruz, «A new Expert System for greenness identification in agricultural images», Expert Syst. Appl., vol. 40, n.o 6, pp. 2275-2286, may 2013.

[18] Q. Meng, R. Qiu, J. He, M. Zhang, X. Ma, y G. Liu, «Development of agricultural implement system based on machine vision and fuzzy control», Precis. Agric., vol. 112, n.o 0, pp. 128-138, mar. 2015.

[19] A. Tellaeche, G. Pajares, X. P. Burgos-Artizzu, y A. Ribeiro, «A computer vision approach for weeds identification through Support Vector Machines», Appl. Soft Comput., vol. 11, n.o 1, pp. 908-915, ene. 2011.

[20] T. Bakker, K. Asselt van, J. Bontsema, J. Müller, y G. Straten van, «Systematic design of an autonomous platform for robotic weeding», J. Terramechanics, vol. 47, n.o 2, pp. 63-73, abr. 2010.

[21] J. Wang, K. Damevski, y H. Chen, «Sensor data modeling and validating for wireless soil sensor network», Precis. Agric., vol. 112, n.o 0, pp. 75-82, mar. 2015.

[22] K. Jabran, G. Mahajan, V. Sardana, y B. S. Chauhan, «Allelopathy for weed control in agricultural systems», Crop Prot., vol. 72, n.o 0, pp. 57-65, jun. 2015.

[23] P. Hosseini, H. Karimi, S. Babaei, H. R. Mashhadi, y M. Oveisi, «Weed seed bank as affected by crop rotation and disturbance», Crop Prot., vol. 64, n.o 0, pp. 1-6, oct. 2014.

[24] J. L. Opeña, J. R. Quilty, T. Q. C. Jr, y B. S. Chauhan, «Weed population dynamics, herbicide efficacies, and crop performance in a sprinkler-irrigated maize-rice cropping system», Field Crops Res., vol. 167, n.o 0, pp. 119-130, oct. 2014.

[25] A. Alignier, V. Bretagnolle, y S. Petit, «Spatial patterns of weeds along a gradient of landscape complexity», Basic Appl. Ecol., vol. 13, n.o 4, pp. 328-337, jun. 2012.

[26] B. Lal, P. Gautam, R. Raja, A. K. Nayak, M. Shahid, R. Tripathi, P. Bhattacharyya, S. Mohanty, C. Puri, A. Kumar, y B. B. Panda, «Weed community composition after 43 years of long-term fertilization in tropical rice–rice system», Agric. Ecosyst. Environ., vol. 197, n.o 0, pp. 301- 308, dic. 2014.

[27] Z. Gobor, P. Schulze Lammers, y M. Martinov, «Development of a mechatronic intra-row weeding system with rotational hoeing tools: Theoretical approach and simulation», Comput. Electron. Agric., vol. 98, n.o 0, pp. 166-174, oct. 2013.

[28] D. D. Bochtis, C. G. C. Sørensen, y P. Busato, «Advances in agricultural machinery management: A review», Biosyst. Eng., vol. 126, n.o 0, pp. 69-81, oct. 2014.

[29] T. Muoni, L. Rusinamhodzi, J. T. Rugare, S. Mabasa, E. Mangosho, W. Mupangwa, y C. Thierfelder, «Effect of herbicide application on weed flora under conservation agriculture in Zimbabwe», Crop Prot., vol. 66, n.o 0, pp. 1-7, dic. 2014.

[30] V. Kumar y P. Jha, «Influence of herbicides applied postharvest in wheat stubble on control, fecundity, and progeny fitness of Kochia scoparia in the US Great Plains», Crop Prot., vol. 71, n.o 0, pp. 144-149, may 2015.

[31] K. Saito, «A screening protocol for developing highyielding upland rice varieties with superior weedsuppressive ability», Field Crops Res., vol. 168, n.o 0, pp. 119-125, nov. 2014.

[32] B. S. Chauhan, R. G. Singh, y G. Mahajan, «Ecology and management of weeds under conservation agriculture: A review», Crop Prot., vol. 38, n.o 0, pp. 57-65, ago. 2012.

[33] B. Mhlanga, S. Cheesman, B. Maasdorp, T. Muoni, S. Mabasa, E. Mangosho, y C. Thierfelder, «Weed community responses to rotations with cover crops in maize-based conservation agriculture systems of Zimbabwe», Crop Prot., vol. 69, n.o 0, pp. 1-8, mar. 2015.

[34] M. Pérez-Ruíz, D. C. Slaughter, F. A. Fathallah, C. J. Gliever, y B. J. Miller, «Co-robotic intra-row weed control system», Biosyst. Eng., vol. 126, n.o 0, pp. 45-55, oct. 2014.

[35] G. Jiang, Z. Wang, y H. Liu, «Automatic detection of crop rows based on multi-ROIs», Expert Syst. Appl., vol. 42, n.o 5, pp. 2429-2441, abr. 2015.

[36] D. Moshou, X.-E. Pantazi, D. Kateris, y I. Gravalos, «Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier», Image Anal. Agric., vol. 117, n.o 0, pp. 15-22, ene. 2014.

[37] A. Ali, J. C. Streibig, y C. Andreasen, «Yield loss prediction models based on early estimation of weed pressure», Crop Prot., vol. 53, n.o 0, pp. 125-131, nov. 2013.

[38] S. Fahad, S. Hussain, B. S. Chauhan, S. Saud, C. Wu, S. Hassan, M. Tanveer, A. Jan, y J. Huang, «Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times», Crop Prot., vol. 71, n.o 0, pp. 101-108, may 2015.

[39] N. Tursun, A. Datta, E. Tuncel, Z. Kantarci, y S. Knezevic, «Nitrogen application influenced the critical period for weed control in cotton», Crop Prot., vol. 74, n.o 0, pp. 85- 91, ago. 2015.

[40] I. J. Reeve, M. J. Coleman, y B. M. Sindel, «Factors influencing rural landholder support for a mandated weed control policy», Land Use Policy, vol. 46, n.o 0, pp. 314-323, jul. 2015.

[41] M. A. El-Sheikh, «Weed vegetation ecology of arable land in Salalah, Southern Oman», Saudi J. Biol. Sci., vol. 20, n.o 3, pp. 291-304, jul. 2013.

[42] A. Kamoshita, Y. Araki, y Y. T. B. Nguyen, «Weed biodiversity and rice production during the irrigation rehabilitation process in Cambodia», Agric. Ecosyst. Environ., vol. 194, n.o 0, pp. 1-6, sep. 2014.

[43] Q. Paynter, S. V. Fowler, L. Hayes, y R. L. Hill, «Factors affecting the cost of weed biocontrol programs in New Zealand», Biol. Control, vol. 80, n.o 0, pp. 119-127, ene. 2015.

[44] Departamento Nacional de Planeación, «Bases del Plan de Desarrollo 2014 - 2018». jun-2015.


[46] E. F. Garzón y J Mora Delgado, «ANALISIS MULTICRITERIO DEL ESTADO DE LAS PASTURAS DE LA HACIENDA GANADERA GARCIA ABAJO EN CORINTO (CAUCA, COLOMBIA)», Rev. Fac. Med. Vet. Zootec., vol. 61, n.o 1, pp. 64-82, 2014.

[47] S. Canizales y J. Celemín, «Manejo e Inventario de arvenses en pasturas de clima cálido y medio en el Departamento del Tolima», Revista Colombiana de Ciencia Animal, vol. 2, n.o 2, pp. 28 - 36, 20-feb-2010.

[48] C. C. Cortés Galeano, «Caracterización de la composición floristica registrada en el humeral Chorrillos (Bogotá D.C)», Planeación Ambiental y Manejo Integral de los Recursos Naturales, 10-may-2014.

[49] J. Lopez y D. Villalba, «MANEJO INTEGRADO DE ARVENSES EN EL CULTIVO DE CAFÉ Nueva alternativa de control químico», Cenicafé, 01-mar-2012.

[50] CESGIR, «“Hay que llegar a un manejo responsable de plaguicidas”», Portafolio, may 2014.

[51] R. Cid, «Mapeo de Malezas para Aplicaciones Sitio Específicas», INTA, castelar, pp. 60 - 65, 01-jun-2012.

[52] J. M. Ramírez, J. J. Perfetti, y J. G. Bedoya, «Estimación de brechas tecnológicas y sus determinantes en el sector agropecuario colombiano», FEDESSARROLLO, vol. 67, pp. 1 - 34, jul. 2015.

Cite this paper

Beatriz Nathalia Serrato Panqueba, Carlos Arturo Castillo Medina. (2018) Colombia Land of Opportunities to Apply Precision Agriculture: An Overview. International Journal of Agricultural Science, 3, 11-19


Copyright © 2018 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0