Dursun Aydin, Ersin Yilmaz



Nonparametric Regression with Randomly Right-Censored Data

pdf PDF


The purpose of this study is to estimate the right-censored nonparametric model with kernel smoothing method. To consider the censorship, we used Kaplan-Meier estimator proposed by Stute (1993). In nonparametric statistics, a kernel smoothing method needs a smoothing parameter which is also called as a bandwidth parameter. In this study, we choose the bandwidth parameter by using three selection methods such as improved version of Akaike information criterion (AICc), Risk estimation using classical pilots (RECP) and Generalized cross-validation(GCV) method, respectively. For this purpose, a Monte-Carlo simulation study is performed to illustrate which selection criterion gives the best estimation for different sample sizes and censoring levels.


Kernel Smoothing, Kaplan-Meier Estimator, Nonparametric Regression, Censored data


[1] Stute, W. (1993), Consistent Estimation Under Random Censorship When Covariates are Present, Journal of Multivariate Analysis, 45,89-103. [1] Stute, W. (1993), Consistent Estimation Under Random Censorship When Covariates are Present, Journal of Multivariate Analysis, 45,89-103. 

[2] Koul, H., Susarla, V., Van Ryzin, J. (1981), Regression Analysis with Randomly RightCensored Data, The Annals Of Statistics, 1276- 1285. 

[3] Nadaraya, E. A. (1964), On Estimating Regression, Theory Of Probability & Its Applications, Vol. 9(1), 141-142. 

[4] Watson, G.S. (1964), Smooth Regression Analysis, Sankhya, Series A, Vol. 26, 359-372. 

[5] Wand, M.P., Jones, M.C.(1984), Kernel Smoothing, Chapman & Hall. 

[6] Hardle, W. (1990), Applied Nonparametric Regression, Cambridge University Press. 

[7] Green, P.J., Silverman, B.W. (1994), Nonparametric regression and Generalized Linear Models, Chapman & Hall, London. 

[8] Hardle,W. Müller, M. (1997), Multivariate and Semiparametric Kernel Regression, Doctorate Dissertation, University Of Humboldt, Institute of Statistics and Econometrics, Berlin, Germany. 

[9] Kaplan, E.L., Meier, P. (1958), Nonparametric Estimation From Incomplete Observations, Journal Of The American Statistical Association, Vol. 53(282), 457-481. 

[10] Leurgans, S. (1987), Linear Models, Random Censoring and Sythetic Data, Biometrika, Vol. 74(2), 301-309. 

[11] Zheng, Z.K. (1984), Regression Analysis with Censored Data, Ph.D Dissertation, University Of Colombia. 

[12] Hurvich, C.M., Simonoff, J.S., Tasi, C.L. (1988), Smoothing Parameter Selection in Nonparametric Regression Using An Improved Akaike Information Criterion, J. R. Statist. Soc. B., Vol. 60, 271-293. 

[13] Wang, Q-H., Li, G. (2002), Empirical Likelihood Semiparametric Regression Analysis Under Random Censorship, Journal of Multivariate Analysis, Vol. 83(2), 469-486. 

[14] Lee, T.C.M. (2001), A stabilized Bandwidth Selection Method For Kernel Smoothing of Periodiagram, Signal Process, Vol. 81,419-430. 

[15] Lee, T.C.M., Solo, V. (1999), Bandwidth Selection for Local Linear Regression: A Simulation Study, Computational Statistics and Data Analysis, Vol. 42, 139-148. 

[16] Craven, P., Wahba, G. (1979), Smoothing Noisy Data with Spline Functions, Numeriche Mathematik, Vol. 31, 377-403.

Cite this paper

Dursun Aydin, Ersin Yilmaz. (2016) Nonparametric Regression with Randomly Right-Censored Data. International Journal of Mathematical and Computational Methods, 1, 186-189


Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0