oalogo2  

AUTHOR(S): 

S. V. Gorelova, D. E. Babicheva, M. V. Frontasyeva, K. N. Vergel, E. V. Volkova

 

TITLE

Atmospheric Deposition of Trace Elements in Central Russia: Tula Region Case Study. Comparison of Different Moss Species for Biomonitoring

pdf PDF

ABSTRACT

Using the method of passive moss biomonitoring air pollution of one of the major industrial regions of Central Russia - Tula region – was studied. A high content of a number of elements of anthropogenic origin V, Fe, Zn, As, Sm, Tb, Hf, W, Th, and U in the air compared to other regions of Russia and high content of As, Cd, Cr, Fe, V, Zn and Al compared to the CIS countries and Europe were revealed. The reason for such high level of anthropogenic air pollution in the region is the activity of enterprises of metallurgical, defense, engineering and chemical industries. Instrumental epithermal neutron activation analysis (ENAA) up to 42 elemental concentrations in moss samples collected in different natural zones of the investigated area (coniferous and deciduous forests, forest-steppe and steppe). It was shown that the ability to accumulate elements from wet and dry atmospheric deposition is similar to moss Pleurozium schreberi recommended by the UNECE ICP Vegetation Programme and for some studied moss species collected in Tula region Abietinella abietina, Aulacomnium palustre, Climacium dendroides, Brachythecium rutabulum, Brachythecium salebrosum, Dicranum polysetum, Dicranum scoparium, Eurhynchium angustirete, Rhytidiadelphus subpinnatus, Orthotrichum speciosum, Oxyrrhynchium hians. These species can be recommended for use in passive moss biomonitoring of atmospheric deposition of trace elements.

KEYWORDS

biomonitoring, epithermal neutron activation analysis, air pollution, trace elements, heavy metals, rare earth elements, species of moss bio-monitors

REFERENCES

[1] Berg T, Steinnes E. Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: from relative to absolute values. Environmental Pollution, 1997; 98: 61-71. [1] Berg T, Steinnes E. Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: from relative to absolute values. Environmental Pollution, 1997; 98: 61-71. 

[2] Dunaev AM, Latukhina KS, Abdalla AA, Rumyantsev IV, Nikiforov AYu. Study of heavy metal contents in soil, river water, snow, needles and mosses of Ivanovo Region. Neutron spectroscopy, Nuclear Structure, Related Topics. XIX Intern. Seminar on Interactioon of Neutrons with Nuclei (Dubna, May 25-28, 2011). – Dubna, JINR, 2012:320- 326. 

[3] Dunaev AM, Rumyantsev IV, Frontasyeva MV, Grinevich VI. Atmospheric air contamination assessment in Ivanovo Region by means of combined analysis of snow and mosses. Fundamental Interactions & Neutrons, Nuclear Structure, Ultracold Neutrons, Related Topics. XXI Intern. Seminar on Interactioon of Neutrons with Nuclei (Alushta, Ukraine, May 20-25, 2013). Dubna, JINR, 2014:282-286. 

[4] Ermakova EV, Frontasyeva MV, Stеines E. The study of the atmospheric deposition of heavy metals and other elements in the Tula region using the method of moss-biomonitors. Environmental chemistry, 2004 a; 13: 167-180. – Russian. 

[5] Ermakova EV, Frontasyeva MV, Pavlov SS, Povtoreiko EA, Steinnes E, Cheremisina YeN. Air Pollution Studies in Central Russia (Tver and Yaroslavl Regions) Using the Moss Biomonitoring Technique and Neutron Activation Analysis. Journal of Atmospheric Chemistry. Kluwer Academic Publishers. Printed in the Netherlands, 2004 b; 49: pp. 549–561. 

[6] Ermakova EV, Frontasyeva MV, Steinnes E. Air pollution studies in Central Russia (Tula region) using the moss biomonitoring technique, NAA and AAS. J. Radioanal. Nucl. Chem., 2004 c; 259: pp. 51–58. 

[7] Fernández JA, Carballeira A (2001) Evaluation of Contamination, by Different Elements, in Terrestrial Mosses. Arch Environ Contam Toxicol 40: pp. 461–468. 

[8] Frontasyeva MV, Smirnov LI, Steines E, Lyapunov SM, Cherchintsev VD. Heavy metal atmospheric deposition study in the South Ural Mountains. J. Radioanal. Nucl. Chem, 2004; 259: pp. 19-26. 

[9] Frontasyeva M.V. Neutron activation analysis for the Life Sciences. A review. “Physics of Particles and Nuclei”, 2011, Vol. 42, No. 2, p. 332-378 http://www.springerlink.com/content/f8367232 34434m27/ 

[10] Frontasyeva M.V., Harmens H. Monitoring of atmospheric heavy metal and nitrogen deposition in Europe using bryophytes. The manual on biomonitoring. Simultaneous collection of mosses 2015. International cooperative program on vegetation ICP Vegetation. 2015. 28 P. 

[11] Gorelova SV, Kozlov SA, Tolkacheva EY, Gorbunov AV, Lyapunov SM. 

[Ecological state of soil of Tula city. In: Biology - Science of XXI Century: The 18th International Conference Pushchino School of Young Scientists (Pushchino, 21 - 25 April 2014). Abstracts. Pushchino, 2014 pp. 410-411]. – Russian 

[12] Gorelova SV, Kozlov SA, Tolkunova E.Y, Lyapunov SM, Gorbunov AV, Okina OI, Frontasyeva MV. The study of atmospheric air in industrial areas of Tula city. Biology - Science of XXI Century: 19th International Conference Pushchino School of Young Scientists (Pushchino, 20 - 24 April 2015). Abstracts. Pushchino, 2015. P.418. 

[13] Harmens H, Norris D et al. Spartial and temporal trends in heavy metal accumulation in mosses in Europe (1990—2005). RMG Design and Print Limited, Cromwell Court, United Kingdom, July 2008: 51 p. 

[14] Harmens H et al. Mosses as biomonitors of atmospheric heavy metal deposition: spatial and temporal trends in Europe. Environmental Pollution, 2010; 158: pp. 3144-3156. 

[15] Harmens H, Norris DA, Cooper DM, Mills G, Steinnes E et al. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environmental Pollution, 2011; 159: 2852- 2860. 

[16] Harmens H, Norris D, Mills G, et al. Heavy metals and nitrogen in mosses: spatial patterns in 2010/2011 and long-term temporal trends in Europe. ICP Vegetation Programme Coordination Center, Center for Ecology and Gidrology, Bangor, UK, 2013 a: 63. 

[17] Harmens H, Foan L, Simon V, Mills G. Terrestrial mosses as biomonitors of atmospheric POPs pollution: A review. Environmental Pollution, 2013 b; 173: 245- 254. 

[18] Harmens H, Mills G, Hayes F, Norris D. et al. Air pollution and vegetation. ICP Vegetation annual report 2012/2013. ICP Vegetation Programme Coordination Centre, CEH Bangor, UK, 2013 c. ISBN: 978-1-906698-43- 0. http://icpvegetation.ceh.ac.uk 

[19] Koroleva YuV. Use of mosses (Hylocomium splendens, Pleurozium schreberi) to evaluate the absolute values of the atmospheric deposition of TM in the Kaliningrad region. Bulletin of the Kant Russian State University. Ser. Natural science. Kaliningrad: Immanuel. Kant, 2006; 7:29-34. 

[20] Koroleva YuV. Bioindication atmospheric deposition of heavy metals in the Kaliningrad region. Kant Russian State University. Bulletin of the Russian State Kant University. Ser. Natural science. Kaliningrad: Immanuel. Kant, 2010; 7:39-44. 

[21] Koroleva YuV, Puhlova IA. New data on the bioconcentration of heavy metals in the Baltic region. Bulletin of the Russian State Kant University. Ser. Natural science. Kaliningrad: Immanuel. Kant, 2012; 7:99-107. 

[22] Pavlov SS, Dmitriev AYu, Frontasyeva MV. Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia. Journal of Radioanalytical and Nuclear Chemistry, May 2016, Vol. 309, No. 1, pp. 27-38. http://link.springer.com/article/10.1007/s10967 -016-4864-8. 

[23] Polousova GYu. Statistical analysis of the impact of environmental factors on the health of the population of the Tula area. // Abstract of dissertation for the degree of candidate of economic sciences. Moscow, 2003. - 21 p. 

[24] Report on the environmental situation in the Tula region in 2013. The Ministry of Natural Resources and Ecology of the Tula region. Tula, 2014. 114 p. http://www.greenpatrol.ru/sites/default/files/do klad_ob_ekologicheskoy_situacii_v_tulskoy_o blasti_2014.pdf 

[25] Rühling A, Tyler G, An ecological approach to the lead problem. Bot. Notiser, 1968; 12: pp. 321-342. 

[26] Rühling A, Tyler G. Regional differences in the heavy metal deposition over Scandinavia. J. Appl. Ecol., 1971; 8: pp. 497-507. 

[27] Rühling A, Tyler G. Heavy metal deposition in Scandinavia. Water Air Soil Pollut.,1973; 2: pp. 445-455. 

[28] Ruhling A, Rasmussen L, Pilegaard K, Makinen A, Steinnes E. Survey of atmospheric heavy metal deposition in the Nordic countries in 1985 – monitored by moss analysis, NORD, 1987;21: 44. 

[29] Rühling A. Atmospheric Heavy Metal Deposition in Europe — estimations based on moss analysis. Nordic Council of Ministers, Copenhagen, Nord, 1994: 9. 

[30] Rühling Å, Steinnes E. Atmospheric Heavy Metal deposition in Europe 1995 – 1996, NORD 1998:15, Nordic Council of Ministers, Copenhagen, Rounborgs grafiske hus, Holstebo, 1998:67. 

[31] Rühling Å, Steinnes E, Atmospheric Heavy Metal Deposition in Europe 1995 -1996. Nordic Council of Ministers, NORD, 1998:15 p. 

[32] Schröder W. et al. Are cadmium, lead and mercury concentrations in mosses across Soikkeli S, Karenlampi L. Cellular and ultrastructure effects. In: Treshow M, ed. Air Pollution and Plant Life. Chichester: John Wileyand Sons, 1984: pp. 159-174. 

[33] Smirnov LI, Frontasyeva MV, Steines E. Multivariate statistical analysis of heavy metals and radionuclides concentration in the mosses and soil of South Ural. Atomic energy, 2004; 97(1):68-74. 

[34] Sokolov EM, Samartsev IT, Eganov VM, Koryakov AE, Tulyakov SP. Environmental conditions and the health of the population of the Tula region. Tutorial. Tula: Tula State University, 2000. - 329 p. 

[35] Spartial and temporal trends in heavy metal accumulation in mosses in Europe (1990— 2005), UNECE ICP Vegetation. Editors: Harmens H., Norris D. and participants of the moss survey. RMG Design and Print Limited, Cromwell Court, United Kingdom, July 2008: 51p. 

[36] Steines E. Use of mosses in heavy metal deposition studies. EMEP/CCC Report, 3/85:161-170. 

[37] Steinnes E. Atmospheric deposition of heavy metals in Norway studied by moss analysis using neutron activation analysis and atomic absorption spectrometry. J. Radioanal. Chem., 1980; 58: 387-391. 

[38] Steinnes E., Andersson EM. Atmospheric deposition of mercury in Norway: temporal and spatial trends. Water Air Soil Pollut., 1991; 56: 391-404. 

[39] Steinnes E, Rambaek JP, Hanssen JE. Largescale multi-element survey of atmospheric deposition using naturally growing moss as biomonitor. Chemosphere, 1992; 35: 735-752. 

[40] Vergel K.N., Goryaynova Z.I., Vihrova I.V., Frontasyeva M.V. Method moss bio-monitors and GIS technologies in the assessment of air pollution by industrial enterprises of the Tikhvin district of Leningrad. Ecology of urbanized areas, 2014: 2. - С 92-101 

[41] http://www.biopix.com/aulacomniumpalustre_photo-42076.aspx 

[42] http://www.taxateca.com/ordenhypnales.html

Cite this paper

S. V. Gorelova, D. E. Babicheva, M. V. Frontasyeva, K. N. Vergel, E. V. Volkova. (2016) Atmospheric Deposition of Trace Elements in Central Russia: Tula Region Case Study. Comparison of Different Moss Species for Biomonitoring. Environmental Science, 1, 220-229

 

cc.png
Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0