oalogo2  

AUTHOR(S):

Stefan Krimmel, Anastasia Stamatiou, Jörg Worlitschek, Heimo Walter

 

TITLE

Experimental Characterization of the Heat Transfer in a Latent Direct Contact Thermal Energy Storage with One Nozzle in Labor Scale

pdf PDF

ABSTRACT

Latent direct contact thermal energy storage presents a promising way of storing thermal energy within a compact unit at high charging and discharging levels of power. On the one hand, the unconventional technique of heat transfer for storing energy depends essentially on the design and the material properties and on the other hand, there are a small number of investigation published in the known literature. Based on basic experiments this paper discusses the fundamentals of the solidifying process by an upward droplet flow through the storage. Because of constant availability in high quality, water is chosen as storage material. The heat transfer fluid consists of thermal-oil with a low viscosity. The measurements includes the history of temperatures in addition to the mass flow of the heat transfer fluid out of seven experiment runs. Out of this data the thermal power is analyzed over the time and associated to the state of solidification. Simultaneously the findings of the experimental characterization contains the description of the power performance by dimensionless parameters as well as the discussion of the temperature distribution inside the storage tank.

KEYWORDS

Direct Contact Heat Exchange, Latent Thermal Energy Storage, Direct Contact Thermal Energy_x000D_
Storage, Heat Exchange, Temperature Distribution

REFERENCES

[1] A. Arteconi, N.J. Hewitt, F. Polonara, Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems, Appl. Therm. Eng. 51 (2013) 155–165. doi:10.1016/j.applthermaleng.2012.09.023.

[2] K. Merlin, J. Soto, D. Delaunay, L. Traonvouez, Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage, (2016). doi:10.1016/j.apenergy.2016.09.007.

[3] G. Alva, Y. Lin, G. Fang, An overview of thermal energy storage systems, Energy. 144 (2018) 341–378. doi:10.1016/j.energy.2017.12.037.

[4] H. Pointner, W.D. Steinmann, M. Eck, C. Bachelier, Separation of Power and Capacity in Latent Heat Energy Storage, Energy Procedia. 69 (2015) 997–1005. doi:10.1016/j.egypro.2015.03.189.

[5] M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications, Energy Convers. Manag. 45 (2004) 1597–1615. doi:10.1016/j.enconman.2003.09.015.

[6] K. Pielichowska, K. Pielichowski, Phase change materials for thermal energy storage, Prog. Mater. Sci. 65 (2014) 67–123. doi:http://dx.doi.org/10.1016/j.pmatsci.2014.03 .005.

[7] S.S. Chandel, T. Agarwal, Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials, Renew. Sustain. Energy Rev. 67 (2017) 581–596. doi:10.1016/j.rser.2016.09.070.

[8] J. Pereira da Cunha, P. Eames, Thermal energy storage for low and medium temperature applications using phase change materials – A review, Appl. Energy. 177 (2016) 227–238. doi:10.1016/j.apenergy.2016.05.097.

[9] M. Delgado, A. Lázaro, C. Peñalosa, B. Zalba, Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry, Appl. Therm. Eng. 63 (2014) 11–22. doi:10.1016/j.applthermaleng.2013.10.011.

[10] J. Shao, J. Darkwa, G. Kokogiannakis, Development of a novel phase change material emulsion for cooling systems, Renew. Energy. 87 (2016) 509–516. doi:10.1016/j.renene.2015.10.050.

[11] R. Velraj, R.V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer, Heat Transfer Enhancement in a Latent Heat Storage System, Sol. Energy. 65 (1999) 171–180. doi:10.1016/S0038- 092X(98)00128-5.

[12] S. Jegadheeswaran, S.D. Pohekar, Performance enhancement in latent heat thermal storage system: a review, Renew. Sustain. Energy Rev. 13 (2009) 2225–2244.

[13] Y. Yuan, X. Cao, B. Xiang, Y. Du, Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage, Sol. Energy. 136 (2016) 365–378. doi:10.1016/j.solener.2016.07.014.

[14] S.D. Sharma, K. Sagara, Latent Heat Storage Materials and Systems: A Review, Int. J. Green Energy. 2 (2005) 1–56. doi:10.1081/GE- 200051299.

[15] T. Nomura, M. Tsubota, T. Oya, N. Okinaka, T. Akiyama, Heat storage in direct-contact heat exchanger with phase change material, Appl. Therm. Eng. 50 (2013) 26–34. doi:10.1016/j.applthermaleng.2012.04.062.

[16] T. Nomura, M. Tsubota, N. Okinaka, T. Akiyama, Improvement on Heat Release Performance of Direct-contact Heat Exchanger Using Phase Change Material for Recovery of Low Temperature Exhaust Heat, ISIJ Int. 55 (2015) 441–447. doi:10.2355/isijinternational.55.441.

[17] Y. Wang, L. Wang, N. Xie, X. Lin, H. Chen, Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit, Int. J. Heat Mass Transf. 99 (2016) 770–781. doi:10.1016/j.ijheatmasstransfer.2016.03.125.

[18] W. Wang, H. Li, S. Guo, S. He, J. Ding, J. Yan, J. Yang, Numerical simulation study on discharging process of the direct-contact phase change energy storage system, Appl. Energy. 150 (2015) 61–68. doi:10.1016/j.apenergy.2015.03.108.

[19] S. Guo, J. Zhao, W. Wang, G. Jin, X. Wang, Q. An, W. Gao, Experimental study on solving the blocking for the direct contact mobilized thermal energy storage container, Appl. Therm. Eng. 78 (2015) 556–564. doi:http://dx.doi.org/10.1016/j.applthermaleng. 2014.12.008.

[20] H. Nogami, K. Ikeuchi, K. Sato, Fundamental Flow Characteristics in a Small Columnar Latent Heat Storage Bath, ISIJ Int. 50 (2010) 1270–1275. doi:10.2355/isijinternational.50.1270.

[21] X.Y. Li, D.Q. Qu, L. Yang, K. Di Li, Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional airconditioning systems, Appl. Energy. 189 (2017) 211–220. doi:10.1016/j.apenergy.2016.11.094.

[22] J. Xu, Q. Xiao, Y. Fei, S. Wang, J. Huang, Accurate estimation of mixing time in a direct contact boiling heat transfer process using statistical methods, Int. Commun. Heat Mass Transf. 75 (2016) 162–168. doi:10.1016/j.icheatmasstransfer.2016.04.012.

[23] E. Almeras, V. Mathai, D. Lohse, C. Sun, Experimental investigation of the turbulence induced by a bubble swarm rising within an incident turbulence, (2017) 1091–1112. doi:10.1017/jfm.2017.410.

[24] D. Pjontek, J. Landry, C.A. McKnight, L.P. Hackman, A. Macchi, Effect of a dispersed immiscible liquid phase on the hydrodynamics of a bubble column and ebullated bed, Chem. Eng. Sci. 66 (2011) 2224–2231.

[25] B.C. Hermann, Weingärtner; Franck, Ernst Ulrich; Wiegand, Gabriele; Dahmen, Nicolaus; Schwedt, Georg; Frimmel, Fritz H.; Gordalla, Water, 1. Properties, Analysis and Hydrological Cycle, in: Ullmann’s Encycl. Ind. Chem., Vol. 39, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012: pp. 1–40. doi:10.1002/14356007.a28_001.pub2.

[26] FRAGOL GmbH+Co. KG, Wärmeträgerflüssigkeiten, (2017) 60.

Cite this paper

Stefan Krimmel, Anastasia Stamatiou, Jörg Worlitschek, Heimo Walter. (2018) Experimental Characterization of the Heat Transfer in a Latent Direct Contact Thermal Energy Storage with One Nozzle in Labor Scale. International Journal of Mechanical Engineering, 3, 83-97

 

cc.png
Copyright © 2018 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0