TITLE

The Application of Accelerated Life Testing Method for Micro Switches

pdf PDF

ABSTRACT

The estimation of product reliability has attracted wordwile attention during the past decades. The estimation produce usually begins with parameter estimation based on test date.The aim of this paper is to introduce the Accelerated Life Testing (ALT) method for the testing of micro switches. The analysis aims to take many effecting factors into account, to provide statistical assurance of the reliability and to give statistically reliable lifetime data in brief time. The Weibull distribution is applied for the investigation of the failure rate in the product’s 'bathtube’ lifetime curve. Weibull distribution capable of modelling bathtub shaped hazard rate function is defined. The importance of this distribution lies in its ability to model monotone as well as non-monotone failure rates, which are quite common in lifetime problems and reliability [10]. The most common failures of the micro switches have been collected, which are essential for testing and understanding the design of test equipment. It is necessary to learn more about the probability and frequency of these failures.

KEYWORDS

Weibull-distribution, lifetime, Accelerated Life Testing, micro switches, 'bathtube’ curve, failures, reliability

REFERENCES

[1] Tibor Gregász, Nemfémes szerkezeti anyagok élettartam-problémáinak minőségügyi megközelítése, PhD thesis, 2009, NYME-Sopron (in Hungarian)

[2] Pál Lautner, Mikrokapcsolók (Kontakta), Híradástechnika Vol. XXXIV, 1983, l No 5. pp 237-239. (in Hungarian)

[3] Imre Mojzes, Mikroelekronika és technológia, Publish Műegyetem, Budapest, 2005, ISBN 963 420 8479. (in Hungarian)

[4] Albert Balogh, Ferenc Dukáti, Megbízhatósági vizsgálatok Weibull-eloszláson alapuló mintavételi eljárásai és tervei, Híradástechnika No. XXX/1. pp 1-8. (in Hungarian)

[5] Albert Balogh, Ferenc Dukáti, László Sallay, Minőségellenőrzés és megbízhatóság, Publish Műszaki, Budapest, 1980, ISBN 0-262-04219-3. (in Hungarian)

[6] Eugen Schaefer, Zuverlassigkeit, Verfügbarkeit und Sicherheit in der Elektronik, Publish Műszaki, Budapest, 1983, ISBN 963 10 49434.

[7] Sarath Jayatilleka, Geoffrey Okogbaa, Accelerated Life Testing, 2014 Workshop on Accelerated Stress Testing and Reliability Conference, Saint Paul, Minnesota 55101, USA, pp 1-21.

[8] Imre Jánok, Pn2 és Pm2 típusú mikrokapcsolók végminősítő eljárása, PhD thesis, 1984, Budapest, (in Hungarian)

[9] http://www.asqrd.org/wp-content/uploads/2014/09/Accelerated-Life-Test-Tool-for-Speedier-Produdct-Development.pdf (downloaded 10.10.2017)

[10] Jalmar M.F. Carrasco, Edwin M.M. Ortega, Gauss M. Cordeiro, A generalized modified Weibull distribution for lifetime modelling, Computational Statistics and Data Analysis 53 (2008), pp.450-462.

[11]A.L. Hartzell, MEMS Reliability, MEMS Reference Shelf, Lifetime Prediction, DOI 10.1007/978-1-4419-6018-4_2, Springer Science + Business Media, LLC 2011, pp 9-42.

[12]Ping Jiang, Jae-Hak Lim, Ming J. Zuo, Bo Guo, Reliablity Estimation in Weibull Lifetime Distribution with Zero - Failure Field Data, Quality and Reliability Engineering International, 2010, DOI: 10.1002 qre.1138, pp. 691-701.

Cite this paper

Vivien Sipkás, Gabriella Bognár. (2018) The Application of Accelerated Life Testing Method for Micro Switches. International Journal of Instrumentation and Measurement, 3, 1-5

 

cc.png
Copyright © 2018 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0