Jorge Antonio Vélez Ramírez, William Fernando Aristizabal Cardona, Javier Benavides Buchelli



Generation of Self-Sustainable Electrical Energy for the Unidad Central Del Valle Del Cauca, by the Use of Peltier Cells

pdf PDF


It is proposed to generate self-sustainable electrical energy taking advantage of the environment’s natural conditions in the Unidad Central del Valle del Cauca (UCEVA). This, by the use of the so-called Peltier Cells, which have the capacity to generate electricity from a thermal gradient, thanks to the properties of the Seebeck, Peltier, Joule and Thompson effects, for semiconductor materials, being these the main theoretical references in this research project. To carry out this idea, it is proposed to design, build and characterize a floating device initially made up by Peltier Cells. Likewise, it is aimed to place on the lake in the university campus in order to take advantage of both the low temperatures of this water reservoir and the high temperatures generated by direct exposure to sunlight turning those opposite temperatures into a source of energy. That energy will provide a certain area adjacent to the lake not before expanding the studies related to the effects mentioned above and other principles of thermoelectricity. This research project will open the doors to a relatively new branch of renewable energies, thermoelectricity, both for the UCEVA and for the scientific community in Tuluá and Valle del Cauca.


Peltier Cells, electric current, Peltier effect, Seebeck effect, Renewable energy, Joule effect, Thomson effect, Thermodynamics


[1] McGrath Matt, Record Surge in atmospheric CO2 seen in 2016, BBC News, Science & Environment, 2017. Recuperado de http://www.bbc.com/news/science-environment-41778089, consultado el 6 de Noviembre de 2017.

[2] [14] Mosiori, Cliff. y Maera, John., Design and Automation of a Hybrid System for Generating Electric Power, Technical University of Mombasa 2017.

[3] German, Línea de tiempo energías renovables, recuperado de http://www.tiki-toki.com/timeline/entry/731111/Linea-de-tiempo-energas-renovables/

[4] PALOU, Nacho., Las plantas solares también pueden flotar, elpais.com, 2017 Al KhalfiouI, M., et al., Anenometer based on Seebeck effect, ScienceDirect, Sensors and Actuators A. 2003

[5] Winder, J.E., Ellis, B.A., Thermoelectric Devices: Solid-State Refrigerators and Electrical Generators in the Classroom., Journal of Chemical Education, vol. 73, Issue 10, p.940. DOI: 10.1021/ed073p940.

[6] Reddy, P., Jang S., Segalman, R.A., Majumbdar, A., Thermoelectricity in Molecular Junctions, Science ASSS. DOI: 10.1126/science.1137149.

[7] Takahashi, H., Okazaki, R., Ishiwata, S, Taniguchi, H., Okutani, A., Hagiwara, M., y Terasaki, I., Colossal Seebeck effect enhanced by quasi-ballisitc phonons dragging massive electrons in FeSb2, Nature communications,.DOI: 10.1038/ncomms12732.

[8] Hájovský, R. Pieš, M., Richtár, L., Analysis of the Appropriateness of the Use of Peltier Cells as Energy Sources, Europe PMC. DOI: 10.3390/s16060760

[9] Holanda, J., et al., Longitudinal spin Seebeck effect in permalloy separated from the anomalous Nernst effect: Theory and experiment, Physical review B 95, 2017.

[10] Herranz, Rocío. Climatización mediante celular peltier. Universidad Pontificia Comillas, 2008, p.7, recuperado de https://www.iit.comillas.edu/pfc/resumenes/48c66604d0038.pdf.

[11] Dalola, Simone, et al., Seebeck effect in ZnO nanowires for micropower generation, SciVerse ScienceDirect, 2011.

[12] A.Foucaran et al., Anemometer based on Seebeck Effect, Sensors and Actuators A: Physical, 2003., DOI 10.1016/S0924-4247(03)00294-2.

[13] Cifuentes, Jorge., Energía Eólica residencial como uso eficiente de la energía renovable y adaptación al cambio climático, Researchgate, 2016.

[15] Silvente, Javier., Kopanos, Georgios., Pistikopoulos, Efstratios., Espuña, Antonio., A Rolling horizon optimization framework for the simultaneous energy supply and demand planning in microgrids; ScienceDirect, El Sevier., Applied Energy, 2015.

[16], [23] Barrera, Agustín., Controlador de temperatura PID, Neuronal y Fuzzy para condensar agua en celda Peltier.

[17] UiGreenMetric, World University Rankings, UI GreeMetric World University Rankings 2017., consulted at Nov 13th, 2017. http://greenmetric.ui.ac.id/

[18] Betancur, L. (2014), Estas son las cinco universidades más sostenibles de Colombia, El Tiempo, recuperado de http://www.eltiempo.com/archivo/documento/CMS-13996375

[19] Cambio Climática Global, Cambio climático, Calentamiento Global y Efecto Invernadero., consulted at Oct 24th, 2017., http://cambioclimaticoglobal.com.

[20] [31] Cremaldi., Lucien., Lab 11. Seebeck and Peltier Effects, Departamento de Física y Astronomía, Universidad de Mississippi, 2017., recuperado de: http://www.phy.olemiss.edu/~cremaldi/PHYS417/Lab_Seebeck%20and%20Pelt%2339B459.pdf

[21],[28] McKenzie, J., Nowotny, T., Neunuebel, C. The Peltier Effect, recuperado de www.santarosa.edu/~yataiiya/E45/PROJECTS/peltier.ppt.

[22] Martínez, Mónica, et al. Efecto Seebeck y Peltier, p 4, recuperado de http://www.feriadelasciencias.unam.mx/anteriores/feria21/feria382_01_efecto_seebec_y_peltier.pdf.

[24] Universidad Pública de Navarra, Introducción a la Termoelectricidad, Grupo de Investigación de Ingeniería Térmica, recuperado de: http://www.unavarra.es/ets02/Introduccion%20a%20TE(c).htm#t.

[25] Rof Albert, Estudio y parametrización de un generador termoeléctrico. (2017), recuperado de: https://upcommons.upc.edu/bitstream/handle/2117/79156/01_TFG.pdf

[26] Martínez Isodoro, Termodinámica de la atmosfera (2017), p (15), recuperado de: http://webserver.dmt.upm.es/~isidoro/Env/Atmospheric%20thermodynamics.pdf

[27] Warsash Scientific, COPYRIGHT WARSASH SCIENTIFIC PTY LTD 2012. Recuperado de http://www.warsash.com.au/products/thermal-monitoring/THERMOELECTRIC-COOLERS-TEC.php

[29] Everredtronics, Thermoelectric generator (2006-2017), recuperado de http://www.everredtronics.com/thermoelectric.generator.html

[30] Seri Lee, HOW TO SELECT A HEAT SINK, Aavid Thermal Technologies, Inc, Everredtronics., 2006-2020. Recuperado de http://www.everredtronics.com/thermoelectric.TES.html.

[32] Liu, Zhejun et al. Extremely Costo-Effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper, 2017. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445597/. DOI: 10.1002/gch2.201600003.

[33] [34] Viscardi, M., Di Leo, R., Viscardi y Di Leo (2016), Study and Experimental test of Pelier Cells for an energy recovery system in a renewable energy device, recuperado de http://www.wseas.org/multimedia/journals/environment/2016/a725815-055.pdf.

[35] Netzsch, Esquema explicativo de la conductividad térmica, recuperado de: https://www.netzsch-thermal-analysis.com/en/

[36] Pontificia Universidad Católica de Chile, Facultad de Fisica, Laboratorio de Electricidad y Magnetismo, Ley de Ohm, Recuperado de http://fisica.uc.cl/images/Ley_de_Ohm_v3.pdf

[36] Universia Chile (2015), ¿Cuáles son las universidades más sustentables del mundo?, recuperado de http://noticias.universia.cl/actualidad/noticia/2015/02/23/1120337/cuales-universidades-sustentables-mundo.html

Cite this paper

Jorge Antonio Vélez Ramírez, William Fernando Aristizabal Cardona, Javier Benavides Buchelli. (2018) Generation of Self-Sustainable Electrical Energy for the Unidad Central Del Valle Del Cauca, by the Use of Peltier Cells. International Journal of Renewable Energy Sources, 3, 20-31


Copyright © 2018 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0