Julián Mora Aliseda, Jacinto Garrido Velarde, René Bedón Garzón



Resilience Indicators as Instruments of Management of Protected Spaces



Environmental sensitivity is increasingly a socio environmental sensitivity. So sustainability has begun to be reformulated from the Nature Sciences through the concept of socio-ecological resilience, claiming a transdisciplinary that is capable of operationally articulate the natural and cultural dimensions of the environment. Along these lines, we suggest a set of Resilience Indicators (RI) with the aim of fully evaluating pressure conditions within protected spaces. In order to work out the RI, it will be necessary to describe, primarily, the systemic characterization of the space set out to be analysed. This task is to facilitate later identification of the core variables of analysis, which will compose the bottom line for the formulation of the indicators intended to assess and monitor the resilience of protected spaces over time. The main goal in ecosystem conservation and management could be summarized as the preservation of ecosystem integrity in relation to human needs. Conservation is mainly based upon ecological stability and its relation to disruptions of human origin. This stability comprises two core components: resistance and resilience.


Environment, Protected Spaces, Resilience Indicators, Sustainability


[1] Abensperg-Traun M., Steven D. & Atkins L. The influence of plant diversity on the resilience of harvester termites to fire. Pacific Conservation Biology, Nº 2, 1996, pp. 279-285.

[2] Achkar, M., Canton, V., Cayssials, R., Domínguez, A. & Fernández, G. Pesce. Comisión Sectorial de Educación Permanente. DIRAC, Facultad de Ciencias. Montevideo, 2005.

[3] Agee JK. Achieving conservation biology objectives with fire in the Pacific Northwest. Weed Technology, Nº 10, 1996, pp. 417-421.

[4] Andersson F., Feger KH., Huttl RF., Krauchi N., Mattsson L., Sallnas O. & Sjoberg K. Forest ecosystem research—priorities for Europe. Forest Ecology and Management, Nº 132, 2000, pp. 111-119.

[5] Bellwood DR., Hughes TP., Folke C., Nyström M. Confronting the coral reef crisis. Nature, Nº 429, 2004, pp. 837-833.

[6] Cochrane MA., Alencar A., Schulze MD., Souza CM., Nepstad DC., Lefebvre P. & Davidson EA. Positive feedbacks in the dynamic of closed canopy tropical forests. Science, Nº 284, 1999, pp. 1834-1836.

[7] Crome FHJ., Thomas MR. & Moore LA. A novel Bayesian approach to assessing impacts of rain forest logging. Ecological Applications, Nº 6, 1996, pp. 1104-1123.

[8] Danielsen F. Stable environments and fragile communities: Does history determine the resilience of avian rain-forest communities to habitat degradation? Biodiversity and Conservation, Nº 6, 1997, pp. 423-433.

[9] Daskalakou EN. & Thanos CA. Aleppo pine (Pinus halepensis) postfire regeneration: The role of canopy and soil seed banks. International Journal of Wildland Fire, Nº 6, 1996, pp. 59-66.

[10] Death RG. Predicting the impacts of biological and physical disturbances: does theoretical ecology hold any answers? New Zealand Journal of Ecology, Nº 20, 1996, pp. 17-26.

[11] De-Leo GA. & Levin S. The multifaceted aspects of ecosystem integrity. Conservation Ecology, Nº 1: 3. 1997.

[12] De Luis M., Raventós J., Cortina J., González-Hidalgo JC. & Sánchez R. Fire and torrential raifall: effects on the perennial grass Brachypodium retusum. Plant Ecology, Nº 173, 2004, pp. 225-232.

[13] Doak DF., Bigger D., Harding EK., Marvier MA., O`Malley RE. & Thomson D. The statistical inevitability of stability-diversity relationships in community ecology. The American Naturalist, Nº 151, 1998, pp. 264-276.

[14] Dornbush ME. Plant community change following fifity-years of management at Kalsow Prairic preserve, Iowa, U.S.A. American Midland Naturalist, Nº 151: 2004, pp. 241-250.

[15] Dorren LKA., Berger F., Imeson AC., Maier B. & Rey F. Integrity, stability and management of protection forests in the European Alps. Forest Ecology and management, Nº 195, 2004, pp. 165-176.

[16] Fritz KM. & Dodds WK. Resistance and resilience of macroinvertebrate assemblages to drying and flood in a tallgrass prairie stream system. Hydrobiologia, Nº 527, 2004, pp. 99-112.

[17] Gascon C., Williamson GB. & Da Fonseca AB. Receding forest edges and vanishing reserves. Science, Nº 288, 2000 pp. 1356-1358.

[18] Ghermandi L., Guthmann N. & Bran D. Early post-fire succession in northwestern Patagonia grassland. Journal of vegetation Science, Nº 15, 2004, pp. 67-76.

[19] Guo Q. Temporal species richness-biomass relationships along succesional gradients. Journal of vegetation Science, Nº 14, 2003, pp. 121-128.

[20] Holling CS. & Meffe GK. Command and control and the pathology of natural resource management. Conservation Biology, Vol 10 Nº 2, 1996, pp. 328-337

[21] Jackson S., Pinto F., Malcom JR. & Wilson ER. A comparison of pre-European settlement (1957) and current (1981-1995) forest comparison in central Ontario. Canadian Journal of Forest Restoration, Nº 30, 2000 pp. 605-612.

[22] Jackson SM., Fredericksen TS. & Malcom JR. Area disturbed and residual stand damage following logging in a Bolivian tropical forest. Forest Ecology and Management, Nº 166, 2002, pp. 271-283.

[23] Laterra P., Vignolio OR., Linares MP., Giaquinta A. & Maceira N. Cumulative effects of fire on a tussock pampa grassland. Journal of vegetation Science, Nº 14, 2003, pp. 43-54.

[24] Leak WB. & Smith ML. Sixty years of management and natural disturbance in a New England forested landscape. Forest Ecology and Management, Nº81, 1996, pp. 63-73.

[25] Ludwig D., Walker B. & Holling CS. Sustainability, stability, and resilience. Conservation Ecology, Nº 81, 1997, pp. 63-73.

[26] Minshall GW., Robinson CT. & Lawrence DE. Postfire responses of lotic ecosystems in Yellowstone National Park, USA. Canadian Journal of Fisheries and Aquatic Sciences, Nº 54, 1997, pp. 2509-2525.

[27] Mora Aliseda, J. Algunas consideraciones sobre la Resiliencia. Monfragüe Resiliente, Nº 1, 2013, pp. 11-16.

[28] Nason JD. & Hamrick JL. Reproductive and genetic consequences of forest fragmentation: two case studies of neotropical canopy trees. Journal of Heredity, Nº 88, 1997, pp. 264-276.

[29] Nepstad DC., Verissimo A., Alencar C., Nobre E., Lima P., Lefebvre P., Schlesinger C., Potter P., Moutinho E., Mensoza E., Cochrane M., Brooks V. Large-scale impoverishment of Amazonian forest by logging and fire. Nature, Nº 398, 1999, pp. 505-508.

[30] OCDE. Organización para la Cooperación y el Desarrollo Económico. 1998. Disponible en: http://www.oecd.org/

[31] Rapport DJ., Whitford WG. & Hilden M. Common patterns of ecosystem breakdown under stress. Environmental-Monitoring-and-Assessment, Nº 51, 1998, pp. 171-178.

[32] Rueda, S. Metabolismo y complejidad del sistema urbano a la luz de la ecología. 1995. Disponible en Internet: http://www.habitat.aq.upm.es/cs/p2/a008.html

[33] Sheil D. & Nasir, Johnson B. Ecological criteria and indicators for tropical forest landscapes: Challenges in the search for progress. Ecology and Society, Nº 9, 2004, pp. 7-12

[34] Townsend CR. & Hildrew AG. Species traits in relation to a habitat templet for river systems. Freshwater Biology, Nº 31, 1994, pp. 265-275.

[35] Weaver JL., Paquet PC., Ruggiero LF. Resilience and conservation of large carnivores in the Rocky Mountains. Conservation Biology, Nº 10, 1996, pp. 964-976.

[36] Wells ML., Hathaway SA. & Simovich MA. Resilience of anostracan cysts to fire. Hydrobiologia, Nº 359, 1997, pp. 199-202.

Cite this paper

Julián Mora Aliseda, Jacinto Garrido Velarde, René Bedón Garzón. (2017) Resilience Indicators as Instruments of Management of Protected Spaces. International Journal of Environmental Science, 2, 191-199


Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0