Aymen Rhouma, Sami Hafsi



Robust Predictive Controller Based on an Uncertain Fractional Order Model

pdf PDF



This paper focuses on Robust Fractional Predictive Control (RFPC) for fractional order dynamic systems with real parametric uncertainties to take into account the uncertain behavior of physical process. Based on worst case strategy, the control law is obtained by resolution of a non convex min-max optimization problem which takes into account the uncertainties on the fractional order model parameters. The performance of the proposed predictive controller are illustrated with practical results of a thermal system and compared to the Fractional Predictive Control (FPC) with fixed parameters.



Robust predictive control; uncertain fractional systems; min-max optimization problem; thermal system.



[1] Fukushima H., Kim T., Sugie T. Adaptive model predictive control for a class of constrained linear systems based on comparison model. Automatica, 2007,43 (2):301–308.

[2] Camacho E.F., Bordons C. Model Predictive Control. Springer-Verlag, Berlin, 2004.

[3] Ramos, C. Martínez, M. Sanchis, J. and Salcedo, J. V. Robust constrained receding-horizon predictive control via bounded data uncertainties. Automatica, 2009:79;1452-1471.

[4] Podlubny I. Fractional Differential Equations, Academie Press, New York, 1999.

[5] Sun H.H., Charef A., Tsao Y., Onaral B. Analysis of polarization dynamics by singularity decomposition method. Annals of Biomedical Engineering, 1992,20:321-335

[6] Oustaloup A. From fractality to non-integer derivation through recursivity, a property common to these two concepts: a fundamental idea from a new process control strategy. 12th IMACS World Conf., Paris, 1988, 203–8.

[7] Oustaloup A. La commande CRONE (Commande Robuste d’Ordre Non Entier). Paris, Hermès,1991

[8] Raynaud H. F., Zergainoh A. State-space representation for fractional order controllers. Automatica, 2000, 36:1017–1021.

[9] A. Pisano, M. R. Rapaić, Z. D. Jelicić, and E. Usai. Sliding mode control approaches to the robust regulation of linear multivariable fractionalorder dynamics. International Journal of Robust and Nonlinear Control 2010;20:2045–2056. 0 50 100 150 200 250 300 350 400 450 0 20 40 60 80 Temperature(C°) Set point Output 0 50 100 150 200 250 300 350 400 450 0 1 2 3 4 5 Input(v) Input 0 50 100 150 200 250 300 350 400 450 0 20 40 60 80 Temperature(C°) Set point Output 0 50 100 150 200 250 300 350 400 450 0 1 2 3 4 5 Input(v) Input

[10] B. M. Vinagre, I. Petras, I. Podlubny, and Y.Q. Chen. Using fractional-order adjustment rules and fractional-order reference models in model reference adaptive control. Nonlinear Dynamics 2002;29:269–79.

[11] H. S. Ahn, Y. Q. Chen, and I. Podlubny. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Applied Mathematics and Computation, 2007;187:27–34. [12] T. Nusret, Ö. F. Özgüven, and M. M. Özyetkin. Robust stability analysis of fractional order interval polynomials. ISA Transactions, 2009:48166-172.

[13] Dadras S., Momeni H.R. Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty, Communications in Nonlinear Science and Numerical Simulation, 2012, 17:367-377.

[14] Rhouma, A., Bouani, F., Bouzouita, B., and Ksouri, M. Model Predictive Control of Fractional Order Systems. Journal of Computational and Nonlinear Dynamics. 2014

[15] Tavazoei, M.S. A note on fractional-order derivatives of periodic functions. Automatica 2010, 46 :945–948.

[16] Hajiloo A., Nariman-zadeh N. and Moeini A. Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties. Mechatronics, Elsevier, 2012, 22:788–801.

[17] Rodriguez E., Echeverria J.C., Alvarez-Ramirez J. 1/f fractal noise generation from Grunwald–Letnikov formula. Chaos, Solitons and Fractals, Elsevier, 2009, 39:882–888

[18] Miller K.S., Ross B. An introduction to the fractional calculs and fractional differential equation. John Wiley and Son, 1993.

[19] Oustaloup A., Olivier C., Ludovic L. Representation et Identification Par Modele Non Entier . Paris: Lavoisier; 2005.

[20] Ramirez, D., Alamo T. and Camacho, E. Efficient implementation of constrained min-max model predictive control with bounded uncertainties. Proceedings of the 41th IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002.

[21] J. L. Battaglia, L. Le Lay, J. C. Batsale, A. Oustaloup and O. Cois, Heat flux estimation through inverted non integer identification models, Int. J. Thermal Science, 2000;39:374-389.

[22] J. L. Battaglia, O. Cois, L. Puigsegur and A. Oustaloup, Solving an inverse heat conduction problem using a non-integer identified model, Int. J. Heat Mass Transfer, 2001;44:2671-2680.

[23] Cois O. Systèmes linéaires non entiers et identification par modèle non entier : application en thermique. PhD thesis, Université Bordeaux1, Talence, 2002.

[24] Malti R., Victor S., Oustaloup A., Garnier H. An optimal instrumental variable method for continuous-time fractional model identification. In 17th IFAC World Congress, 14379–14384. Seoul South Korea, July 2008.

Cite this paper

Aymen Rhouma, Sami Hafsi. (2017) Robust Predictive Controller Based on an Uncertain Fractional Order Model. International Journal of Control Systems and Robotics, 2, 115-121


Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0