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Abstract: Adherence to the schedule is of prime importance in public transport. This paper presents a specific 

application of the Gini coefficient, well known indicator in economics, for the headway adherence assessment. 

The paper shows that Lorenz curve, which is usually used to define mathematically the Gini coefficient, is a 

good indicator of the users' waiting time when it is based on the bus schedule. When it is computed on the basis 

of the ratio of observed headway to the schedule, it is a powerful visual tool that can be used by operators to 

detect the existence of irregularities on a bus line at a glance. An equation gives, in an idealistic case, the 

impact of any single traffic disturbance on the Gini coefficient, making this coefficient comprehensive. A 

detailed analysis is developed, based on the bus proportions according to the headway adherence level. These 

proportions are obtained from new indices coming from the derivative of the Lorenz curve. The values of these 

indexes alert the operator of any adherence disturbance. The examination of the Lorenz curve takes more time, 

but is worthwhile, giving the types of the irregularities The application of these indicators is carried on real-

time data from the New Delhi bus network. 
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1 Introduction 
The reliability of bus travel time is an objective of 

major concern for bus operators and users. For 

users, bus irregularities are associated with 

bunching phenomena or large gaps between buses, 

which results in low attractiveness of the service for 

transit agencies. However, due to traffic conditions 

and variability in bus demand, deviations from 

schedules are unavoidable, leading to an overall 

decrease in the level of service and capacity. The 

ability to accurately and effectively analyze various 

performance measures is fundamental to 

determining how well the bus service is adhering to 

its service standards. Understanding and developing 

methods to assess transit operations performance are 

not only valuable in identifying potential problem 

areas along a route; it is also constructive in 

proposing effective strategies to improve service 

reliability.   

Time reliability measures are related to headway 

adherence or on-time performance measures. 

Headway adherence is often measured when the bus 

service is operating at headway of 10 minutes or 

less scheduled; while on-time performance is 

evaluated for all services with a published timetable. 

In this paper, the reliability of the bus travel time is 

studied using the Gini coefficient and the Lorenz 

curve regardless of the service planning. The Gini 

coefficient is computed for the ratio of actual (real) 

headway to schedule allowing the assessment of the 

respect of the schedule. When the bus service is 

planned as a timetable, the travel times of buses are 

converted to headway.   

We also show that the Lorenz curve is a 

powerful graphical tool for the analysis of the bus 

regularity. When ²drawn for the scheduled headway 

only, the Lorenz curve allows the analysis of the 

regularity of the waiting time of all riders of the bus 

line and is a good measure from the users’ point of 

view. When it is drawn based on the ratio of the 

observed to the scheduled headway, it allows 

analyzing the regularity of the respect of buses of 

the scheduled headway and is, therefore, a good 

measure, mainly from the operator’s point of view.  

The following section of the paper gives a 

literature review, exposing firstly the research 

dedicated to the reliability indicators for public 

transport assessments, and secondly the Gini 

coefficient use in the transportation field. The third 

section explains the Gini coefficient and the Lorenz 

curve. In section 4 we explain that the Lorenz curve 

based on the scheduled headway is equivalent to the 
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Lorenz curve based on the riders’ waiting time if the 

headway is established such that to have the same 

number of riders in each bus; in section 5 we 

introduce a Gini coefficient based on the {observed/ 

scheduled} headway ratio and we demonstrate that 

the associated Lorenz curve is a good indicator of 

the adherence of buses to scheduled headway. 

Section 6 gives interesting properties of the Lorenz 

curve and new indexes coming from its derivative. 

Applications are made on real-time data from 25 bus 

routes of the New Delhi Indian bus network. Section 

7 is dedicated to data processing and headway 

estimation. In section 8 we discuss different results 

of the Gini coefficient and Lorenz curve firstly on 

the route level. Finally, section 9 gives the 

conclusion and perspectives.  

  

2 Literature review  

In the literature, reliability measurements are often 

discussed under three different categories: (1) travel 

time-based, (2) schedule adherence, and headway 

based measures:   

(1). Concerning travel time-based reliability, firstly 

[1] defined reliability as “the ability of the service to 

provide a consistent service over a period of time” 

he proposed the inverse of the standard deviation of 

the measure, such as travel times or wait times as 

indicators.[2] extended this definition by estimating 

travel time reliability to be measured by the ratio of 

the mean travel time to the standard deviation. This 

was to incorporate the differences in the mean 

values over differing bus routes or sections of a 

route. [3] measured travel time variation in terms of 

percentage values of the excess over mean travel 

time, and [4] measured it as the percentage of times 

when travel times exceed the mean value by more 

than 10 percent. [5] defined travel time reliability as 

the difference between the actual and planned travel 

time, assuming that the travel times follow a log-

normal distribution. [6] defined PT reliability, in 

terms of travel time variability (TTV) where TTV is 

a buffer time as presented in [7]. They used the 

difference between the 90th and 10th percentile of 

day-to-day travel times. [8] also proposed the use of 

TTV and lately [9] proposed the use of TTV with 

the difference between the 85th percentile and 15th 

percentile in the numerator.   

(2). [10] and[11] proposed a schedule to adherence 

measures to develop a service quality index. [12] 

defined reliability in terms of the ratio of the 

number of on-time arrivals of the buses to the total 

bus arrivals. Similarly [13] considered the Chicago 

Transit Authority’s definition of ‘running time 

adherence’. It measures the average difference 

between the actual and scheduled times and 

expresses it as a percentage value in terms of the 

scheduled running times. [2] suggested that service 

reliability should also be defined in terms of the 

excess of waiting time experienced by the transit 

users. This measure is also used by Transport for 

London [14. The excess wait time is calculated from 

the difference between the average wait time for the 

passengers if the buses were running on schedule 

and the average wait time experienced. Further [15] 

defined the ‘adherence to schedule’ measure with 

the help of two approaches. The first technique 

measures the ‘reliability of runs that come on 

schedule’, which is estimated by the ratio of the 

number of implemented runs to the total number of 

runs scheduled for the same time period. The second 

approach is defined as a measure of ‘punctuality 

which is closer to the definitions used in other 

research and is calculated by the ratio of the number 

of on-time runs to the total number of runs. In this 

study, runs were considered to be punctual up to 1 

minute early and 5 minutes late from the specified 

scheduled time.  

(3). [16-17] emphasized the importance of regular 

headways, particularly for a high frequency of 

service. They stated that in the case of regular and 

even headways, the wait times are minimized, 

leading to an optimal distribution of passengers in 

the PT. They estimated headways to be irregular as 

a measure of the average deviations of the actual 

headways compared to the scheduled headways. 

Their analysis revealed that there was a higher 

degree of regularity at the beginning of the line, and 

this decreased systematically over consecutive 

stops. 

 [2](Liu and Sinha, 2007) further stressed that 

adhering to the scheduled headways minimizes the 

wait time, and thereby is seen to positively influence 

patronage. When the bus service is unable to 

maintain the scheduled headways, bunching of 

buses occurs, resulting in an uneven and suboptimal 

distribution of passengers in the buses, and due to 

overcrowding, having to bypass bus stops. They 

followed the definition put forth by [18] which 

measured headway reliability as the ratio of the 

standard deviation to the mean headway. [19] 

argued that the regularity of bus service is more 

important to the users, rather than the schedule 

adherence, for high-frequency services. In their 
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proposed measure, they incorporated the concept of 

coefficient of variation, since it accounted for the 

differences in the mean values.  
Further to these publications, we find many 

articles dedicated to the applications of the known 

measurement to public transport networks. [20] 

gave brief evaluations of 20 indicators sorted by 

their function (Travel time indicators, schedule 

adherence indicators, headway regularity indicators 

and wait time indicators). The paper takes interest in 

whether an indicator is “traveler-oriented” or not. 

According to [20] the preferred indicators to use by 

bus operators are the percentage of buses running on 

time and excess waiting time. The authors also 

proposed a new composite indicator named Journey 

Time Buffer Indicator “JTBI”. 

 [21] reviewed nine reliability indicators and 

gave a comparison between them in terms of ease of 

understanding, accuracy measure, agency 

comparability, and cost-efficiency, and gave an 

overall rank for each one of them. [14] compared 

the state of practice of 12 bus operators who belong 

to the International Bus Benchmarking Group 

(IBBG) [22]. They presented four regularity 

indicators and listed the advantages and 

disadvantages of each one of them regarding the 

ease of communication, objectivity, customer 

representation and the nature of inputs.  

[23] reviewed six types of timetable reliability 

indicators used in railways and compare them in 

terms of the information provided, the applicability 

domain (routes, stops, aggregated) and the necessary 

inputs for each one. A microscopic simulation 

model is used to study the indicators' robustness. 

[24] proposed an indicator named « The Reported 

Waiting Time” which predicts the waiting time 

perceived by a traveler; this indicator allows bus 

operators to better understand the concept of waiting 

time from the customer’s point of view.   
[25] (Teng & Lai, 2015) proposed a new 

formulation of Bus Running Indicator (BRI) based 

on Bus Planning Travel Time (BPTT) which was 

also proposed by authors.  
Most of the proposed indicators are not 

expressed on a normalized scale and therefore 

cannot be used to compare one route with another. 

Furthermore, in the majority, they are not 

immediately or intuitively understandable for senior 

management or non-expert external stakeholders.   
The Gini coefficient in the transport field  
The Gini coefficient used in economic studies to 

measure the inequality of revenues and health 

among the population is based on the Lorenz curve 

[26] (OECD, 2010). In the transport sector, we find 

a certain number of papers using the Gini 

coefficient.  

[27] adapted the Gini coefficient and Lorenz 

curve to assess public transport horizontal equity. 

Horizontal equity is when all the population has 

equal transit service regardless of the variability of 

transit needs within population groups. [28] 

(Ricciardi et al., 2015) compared the public 

transport vertical equity, using the Gini coefficient 

(GC), between three vulnerable groups: elderly 

residents, no-income households, and no-car 

households. GC has been largely used in the 

evaluation of public transport equity, in addition to 

these articles readers are referred to [29] and [30] . 
 [31] proposed the use of GC as an evaluation of 

travel time in order to assess its evenness among 

road users. GC is calculated in a case study of roads 

in Korea and is compared with standard deviation, 

speed, buffer time and buffer index to evaluate the 

significance of this measure; results show that the 

Buffer index has a higher positive correlation with 

the GC in this study.  
To the best of our knowledge, only [32] 

proposed a Regularity index based on the Gini 

coefficient. The authors studied the regularity of 

scheduled headway. The indicator was described, 

however, as difficult to understand and to use by the 

[33] (TCRP, 2013).  We hope that, with the new 

developments made here, -notably helping the 

comparisons between bus lines -, that this type of 

criticism will no longer be justified. 
We show in this paper that the application of the 

Gini coefficient to the schedule is of limited interest. 

The GC is, however, a powerful indicator of 

regularity when applied to the ratio of observed to 

scheduled headway. We also show that the Lorenz 

curve offers good visualization of the bus regularity 

which could help operators to have a quick synthetic 

evaluation of the bus route regularity.  

  

3 Gini coefficient(GC)  
The Gini coefficient is often used in economic 

studies [26] (OECD, 2010). It is a relative measure 

intended to represent the income distribution of a 

nation's residents. The Gini coefficient of a 

developing country may increase (due to increasing 

inequality of income) while the number of people in 

absolute poverty decreases.   
The Gini coefficient is usually defined 

mathematically based on the Lorenz curve. A 

Lorenz curve plots the cumulative percentages of 

total income received against the cumulative 
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percentage of the population, starting with the 

poorest individual or household (see Figure 1). The 

Gini coefficient can be thought of as the ratio of the 

area that lies between the line of equality (the 

bisector) and the Lorenz curve (the surface marked 

A on Figure 1) over the total area under the line of 

equality (the surface marked B on Figure 1); i.e., the 

Gini coefficient GC = A / (A + B). Thus a Gini 

coefficient of zero expresses perfect equality, when 

all values are the same (for example, when everyone 

has the same income). A Gini coefficient of one (or 

100%) expresses maximal inequality among values 

(for example, when only one person has all the 

income or consumption, and all others have none).  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Lorenz Curve Definition 
 

GC = A / (A + B). Since A + B = 0.5, the Gini 

coefficient is GC = 2 A, or GC = 1 – 2 B.  (1) 
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gives the GC as a covariance: 
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Let us note hi , the scheduled headway hi  of bus 

i, and hi  +hi  the observed one, hi  being the 

deviation (delay) on the headway.  
The sum of headways throughout the day (thus 

the average headway) does not change in case of 

disturbances, provided that these disturbances have 

disappeared at the end of the day(service). This 

induces an important simplification in the GC 

calculation and interpretation, and is the rationale 

for using the Gini coefficient for the ratios 

i i
i

i

h
y

h

 
  (see section 5, which is the main 

contribution of this paper). Indeed, let us take two 

assumptions: first that this deviation is compensated 

by the opposite deviation (-hi) on one of the 

following bus; second that the scheduled headway 

of this following bus is also hi ; then the deviation on 

the headway ratio hi/hi is compensated  by the 

opposite  -hi/hi. So, when a bus is delayed during 

the day, the sum of the headway ratios does not 

change (thus their average too, which is normally 

close to 1 and which is the value y  in (Eq.2). These 

two assumptions can be criticized as too “idealistic”, 

but they greatly simplify the computation of the 

impact of a disturbance on the GC, thus they make 

the GC much more comprehensive: 
Without any delay, the Lorenz curve is the first 

bisector. 

In the idealistic case the disturbances address k 

(k=1...K) bus couples (the leader delayed, one of the 

followers compensating with a smaller headway 

ratio). When sorting this k disturbances by 

decreasing hk/hk, the first (the biggest) disturbance 

pushes  the 1st couple of buses to occupy the places 

1/n and n/n… the  kth disturbance pushes the kth 

couple of buses to occupy the places k/n and (n-
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k+1)/n . 

Whereas the headway ratios yk and yn-k+1 of (Eq.2) 

would be - without the kth disturbance,- equal to 1; 

within it, their values are [1-hk/hk] and [1+hk/hk]. 

The other ratios yj are not modified 

The impact on GC of the single kth disturbance is, 

following (Eq.2),  

2 / 2 ( 1) /

. .

2(1 2 1/ ) /

.

k k k k

k k

k h n k h

n nn y n y

k n h

n y

    
 

   


               (4) 

The impact of kth disturbance depends on n (the 

number of headways considered), y  (which is close 

to 1) and k/hk (the ratio between the disturbance 

and the scheduled headway). 

 

4 Scheduled headway regularity 

coefficient and waiting time 
Let us consider the Lorenz curve based on the 

scheduled headways. The horizontal axis represents 

the cumulative proportion of buses ordered from 

buses with the smallest headways to buses having 

the largest. The vertical axis represents the 

cumulative headways of the individual buses as they 

are arrayed on the horizontal axis. The diagonal line 

is the function that describes perfectly regular 

service with equal headways for all buses.  
Substituting the series {yi} in (Eq.3) by the series of 

scheduled headways {hi} , we obtain the Gini 

coefficient for the scheduled headways: 

1

2 1
_ 1

2

n
i

i

h i n
Gini S

n H n n

   
         

           (5) 

N is the number of headway observations, H is their 

mean value, i is the rank of the headway. 
 

4.1 The Gini coefficient for the Scheduled 

headways 
We show that the Lorenz curve based on the 

scheduled headways is identical to the Lorenz curve 

plotting the waiting time when the timetable is 

established such that to get the same number of 

users in each bus (except for the passengers of the 

first bus of the day, for which no headway is 

attached): it is, therefore, a good indicator from the 

riders' perspective. 
Let us assume, for the sake of simplicity, that the 

scheduled headways between consecutive buses i-1 

and i are independent of the bus stop on the bus 

route; this means that there is one unique headway 

hi for the bus i at all the bus stops. Assume that the 

bus operator builds the scheduled headways such 

that all buses take the same number of passengers 

(Np), equal the forecasted traffic demand for the 

time corresponding to the headway and that 

passengers go to the stop randomly without 

expectations of boarding a particular bus. The 

cumulative percentage of headways or buses (on the 

X-axis of the Lorenz curve) is thus equal to the 

cumulative percentage of passengers taking these 

buses. The mean waiting time of a passenger is 

equal to half of the headway; the total waiting time 

of the passengers of each bus i is equal to the 

number of passengers by bus multiplied by half of 

the headway (Eq.6).  

.
2

 i

i P

h
w N                                         (6) 

Let us re-number the buses, sorting them 

according to their headway (the bus with the 

smallest headway becomes the first bus); the 

waiting time for all passengers of buses 1 to i  are 

given by (Eq.7): 

i i
j p

p j1,i
j 1 j 1

h N
W N . . h

2 2 
   

  
 

              (7) 

Where [1,i] is the set of passengers of scheduled 

headway less or equal to hi. The total waiting time 

for the whole day on the bus line is: 
N

p

T j
j 1

N
W h

2 

                                          (8) 

The cumulative percentages of the waiting time 

wasted until the ith bus, related to the total waiting 

time, is: 

i N i N
p p

T j j j j1,i
j 1 j 1 j 1 j 1

N N
W / W . h / h h / h

2 2 
     

    

 (9) 
The Lorenz curve plotting the cumulative 

percentages of waiting time against the cumulative 

percentages of the total population waiting for 

buses, starting with the smallest waiting time, is thus 

identical to the Lorenz curve that plots the 

cumulative percentages of scheduled headways. 

Thus the Gini_S coefficient represents exactly the 

waiting time inequity.  
 

5 Gini coefficient based on the ratio of 

observed to scheduled headway as an 
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indicator of the adherence to the 

scheduled 
Operators already know the irregularity of 

scheduled headway implied by the timetable they 

established taking into account many constraints. 

Operators are more interested in the adherence of 

the observed headways to the schedule; that 

adherence can be analyzed thanks to the Lorenz 

curve based on the ratios {observed/scheduled} 

headway; the adherence is assessed by the value of 

the corresponding Gini coefficient, named in this 

paper Gini_R. Like other indicators, the Gini_R 

must be used carefully by operators -its interest is to 

prioritize the actions, to highlight the more severe 

problems. It is well adapted for headway adherence 

control policies. 
The denominators of the ratios used in the 

Gini_R are the scheduled headway. When 

increasing the number of buses, for example, 

multiplying by two bus frequency (this can be the 

case when two bus lines have a common trunk and 

the stops on the common trunk have twice the 

number of buses than the peripheries), the scheduled 

headway are divided by two. Assuming the same 

distribution of the headway deviations the ratios 

used in the Gini_R is multiplied by two; this says 

that the same absolute deviation costs twice as much 

as relatively to headway. This has a sense when 

assuming that the doubled frequency is due to twice 

as many users. However, from the traveler’s point of 

view, comparing the reliability of two (or more) 

lines with different frequencies (or average 

headway, their inverses of frequencies), it is fair to 

have the same index value, for the same headway 

deviation iwhatever the average headway; this is 

obtained by replacing the observed headway hi+Δhi, 

(hi being the scheduled headway and Δhi the 

observed deviation) in the numerators of the ratios, 

by the quantity ; 

Average_Headwayl is the average headway per 

day on the line is equal to D/N, D being the daily 

duty and N the number of headways (i.e. the 

number of buses minus 1) for line l 

Average_Headway0 is the average headway of the 

line with the least frequent time (the highest average 

headway). It is equal to D0/N0 lowest number of 

services is thus N0+1) among all lines. The ratio 

 is less or equal to 1. Then, 

whatever the line l,   is smaller than .  

So the modified numerators  

remain positive. Then the modified ratios which are 

used in the Lorenz curves and the Gini coefficients, 

instead of being 
 

l

l
i i
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h h

h
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factor
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l l

l

 has a 

standardization effect. This modified ratio is built to 

ensure that, on average, the same deviation, the 

same modified ratio whatever the line l.  
Analyzing and comparing the schedule adherence 

for different parts of the day (peak /off-peak) during 

which the average bus frequency varies, also 

requires similar modifications of the ratios  
The passage from the ratios to “modified” ones 

changes the average ratio Ṝlin 
new

l
R , the Gini-R, the 

Lorenz curve, its derivative. The following 

equations give the correspondence: 
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 being the 

Lorenz curve based on modified ratios and its 

derivative for line l. 
Historically, the Gini coefficient, the Lorenz 

curves display the income inequality in a state. 

Comparing the inequalities between different states 

by superimposing Lorenz curves is particularly valid 

when the average income is the same across the 

different states. Here the comparisons will be 

particularly valid if the average ratios R l are the 

same or at least similar for all lines l. When 

different, the R l values must be taken into account 

in the comparisons between lines. 
Let us assume that the first and the last bus of the 

day are on time; this generally happens, even if it is 

not strictly. Then two cases may happen: 
In the case where there is no missing data nor 

missing bus, the average ratio is generally close to 

the value 1 for all bus lines. Indeed there is 

compensation between the observed headway 

deviation leading to the following conservative 

equation:  

This does not strictly imply that  , 

as the denominator hi depends on i. However, the 

scheduled headway on a line does not change very 

often along a day, thus this sum is generally close to 

zero, implying that the average of the ratios 

“observed/scheduled headway” is close to 1. 

All average ratios Ṝl are closed to the value 1, thus 

to each other. Therefore the visual comparison of 

the different Lorenz curves is right. 

- In the case of missing data or missing bus,- for 

instance, k missing bus or missing data on the line 

l, each with a scheduled headway hl, we have: 

hi=h.kl     >0. The average ratio is perhaps as 

much as 1+kl/Nl depending on line l. 

 

6 Properties of the Lorenz curve 

The Lorenz curve has different properties that make 

it a powerful graphical indicator [34]. Its different 

parts may help the operator to identify the headway 

adherence to the schedule. As we can see in 

Figure 2, in one glance, the operator identifies: 

 At left, the buses with observed headway shorter 

than scheduled.  

 At the center, the buses respecting more or less 

the scheduled headway. 

 At right, the long or very long intervals as 

compared to the scheduled ones. 

 

1- The Lorenz curve L(x) is piecewise linear. 

Its derivative is piecewise constant. Being a 

cumulative ratio proportion, the slope of the straight 

line between the points is

i i i 1 i 1
;L and ;L

N N N Nl l l l

                
            

i 1 i 1
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h h1

R h
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  where R l  is the average of the 

headway ratios. 

 As the ratios 
i i

i

h h

h

l

l

 
are sorted from the 

lowest to the greatest, this slope (i.e. the derivative 

of the Lorenz curve) is increasing, the Lorenz curve 

is convex. 
Just before a strict increase of the headway ratio, 

i.e. for buses i (which corresponds to the bus 

proportion xi=i/Nl ) such as 
i i

i

h h

h

l

l

 
is strictly 

lower than
i 1 i 1

i 1

h h

h

l

l
 



 
 , the derivative of the 

Lorenz curve is discontinuous, passing from 

i i

i

h h1

R h

l

l
l

 
  at xi_to

i 1 i 1

i 1

h h1

R h

l

l
l

 



 
  at xi+. 

Note that max
R
l

 the highest ratio. The highest value 

of the derivative (slope) reaching the point {1,1} ) is 

equal to max
R
l

/Ṝ l 
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 Figure 2: The Lorenz Curve Properties 
 

1- “Part 0”, at the left of the Lorenz curve, 

gathers the bunched buses (if existing), which have 

an observed headway near 0, thus a very small 

headway ratio. Then, the derivative of the Lorenz 

curve (equal to this very small headway ratio 

divided by R l ) remains very low..  

2- Perfect equity (all ratios equal) lead to a 

Gini coefficient equal to 0. In this case, Part 1 

covers the whole interval [0 1] and the Lorenz curve 

is confounded with the first bisector. The more 

problems (whatever their source), the higher the 

Gini coefficient is and the more the Lorenz curve 

deviates under the first bisector. “Part 1” is reduced 

for the benefit of the proportions of low ratios (at 

the left of Part1) and of high ratios (at the right of 

Part1). 
 

3- Limits of Part 0, Part 1, Part 2. 

Let us define xas the proportion of buses such 

as the Lorenz curve derivative passes, between xr-to 

xr+, from a value lower than r/ R l , to a val 

ue equal or greater ,i.e. the headway ratio at 

xr+1/Nl reaches or exceeds the values r. 

r r

r
L ' x L ' x

R

l l

l
 

   
    

   
                      (15) 

 The limits of Part 0, Part 1 and Part 2 are 

obtained by the values of xr, for specific values of r: 

Let hl be the average scheduled headway on line 

l- for instance hl =14 minutes. A bus is bunched 

when its observed headway is only the time of 

loading/unloading passengers’ -one minute for 

instance. Its headway ratio is then below a 

threshold, obtained by dividing this time by its 

scheduled headway, in average hl- in the example 

this threshold is r=0.07=1/14. Part 0 is then the 

interval [0,x0.07]. However it is not excluded that 

Part 0 includes a few non-bunched buses, when their 

scheduled headway is much greater errors than the 

average scheduled used for the threshold.  
For r=1, [0, x1] corresponds to buses with an 

observed headway shorter than scheduled, whereas 

[x1+1/Nl,1]  corresponds to buses with an observed 

headway equal or greater than scheduled. Part 1, 

around x1, is defined here as buses whose headway 

ratio is comprised between r=0.75 and r= 1.25. This 

corresponds, for example in the case where the 

scheduled headway is 14 minutes, to a headway 

deviation less than 3’30” in absolute value. Thus 

Part1 =[x0.75+1/Nl, x1.25].  

Part 2” at the right of the Lorenz curve is defined 

as the proportion of headway ratios greater than 2, 

which can be considered as irregular. Part 2= 

[x2+1/Nl, 1]. The number of such buses is Nl(1-x2)-

1. Their cumulative headway ratio is

 21 L(x ) R Nl l   . It corresponds to an excess 

headway ratio E2 =

   2 21 L(x ) R 1 x Nl l
 

     
 

  . 

Headway ratios over 2 occur when: 
 

a) the previous bus did not pass,  

b) the previous bus passed but the 

corresponding data was not recorded, 

c) the emergence or aggravation of a traffic 

jam (or another event) slows down a bus, creating a 

large headway before the bus, 
The number of occurrences of cases a) and b) is 

equal to the difference between the scheduled 

number of buses and the observed number of buses 

in the data file. 

Thus E2, quantifies the number of missing data, 

missing bus, cumulative headway deviation (divided 

by one scheduled headway) for buses whose delay is 

even more than their scheduled headway. Strictly 

speaking, E2 is only a lower bound of this quantity, 

since a non-recorded bus could sometimes result, 

behind, in a headway ratio below two: this occurs 

when the previously recorded bus was delayed. 
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- Let [ max
R
l

] be the integer part of max
R
l

. In the case 

where max
R
l

is equal or greater than 3, additional 

xrare considered: for all r integers between 3 and [

max
R
l

]. To make some equations easier, let us 

complete this series by r=[ max
R
l

]+1, with 

systematically 
max

1

1
R

x
 

 
 


l

l

 

The interval 1
,

r r
x x



 
  

l l

 contains 1r r
N x x



 
  
 

l l

l  

buses having an observed headway equal (or 

greater) than “r” times the scheduled one, due either 

to traffic delays or to “r-1” missing data or missing 

buses, ahead.  

The series 1 max
{ , 2, }

r r
x x r R



   
       

l l l

 constitutes 

a series of indicators of the worst conditions that we 

can call “Misery indicators”. 
 

4- When superimposing several lines on the 

same graphic, the Lorenz curves (and their 

derivatives) are based on modified headway ratios 

(the modification depending on the line frequency); 

the initial series max
, 0.07..

r
x r R

  
     

l l

 , based on 

non-modified ratios, are identified by the following 

condition obtained by combining (Eq.14) and 

(Eq.15): 

 
   

 

0 0

mod 0 0

0 0

0 0

mod0 0

mod

1

1 1 /

1

ified

r

ified

rified

N D r N D
R

N D R N D
L x

N D R N D

N D N D
r

N D N D
L x

R





 

 
 

 

 

 (16) 

5 - By analogy with the definition of rx
l

 in 

(Eq. 14), let us define 
mod

max
, 0.07,

ified

r
x r R

  
     

l, l

as the proportion of buses such as the derivative of 

the Lorenz curve for modified ratios 

'
mod

( )
ified

L x
 
 
 

 

reaches or exceeds r/
mod ified

Rl . For a given r >1, 

this corresponds, for bus number 
mod

1
ified

r
N x 

l,

l , 

to an extra modified headway ratio of r-1. The extra 

waiting time for the travelers is, on average only, 

but whatever l, equal to (r-1).h0, h0 being the 

average headway of line “0”, the line with the 

lowest frequency. Thus, the proportions 

 modified

r
x ,
l,

l  are comparable from the travelers' 

point of view and these indicators are powerful. The 

previous comments related to missing data, missing 

buses apply on initial {xr,l}and not on modified 

ones. 

For r=1,  
mod

1 1

l, lified
x x
 

   since the proportion of 

buses with Δhi≤0 does not change when multiplying 

Δhi  by  for forming the modified ratio.  

 

 

7 Data 

 
7.1 Raw data 

Delhi is the capital city of India with a 

population estimated about 22 million. The 

mode share of trips by buses is ~20%, with a 

fleet size of ~10,000 buses plying on ~700 

routes  [35]. We used the bus data provided by 

the operator DIMTS for September 2016 for a 

sample of 25 routes (Figure 1 

Figure 1). The AVL data consists of route-

geometry specifications, bus stop locations, trip 

details, and time performance details. These are 

provided separately for both the directions of 

each route, classified as “UP” and “DOWN”. 

Route-geometry data lists the various segments 

that comprise the route in a particular direction, 

along with the coordinates of the key locations 

defining the segment. An example of this file is 

presented in Table 1. Bus stop location data 

specifies the sequence of bus stops for the particular 

direction of the route, and also the coordinates of the 

stops (see Table 2). The files on trip details and trip 

performance provide the details of individual bus 

trips for each day. They also give the information 
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whether the trip functioned as normal, or was 

deviated from the route (noted as “route deviated”), 

or if there was a breakdown and the trip was 

terminated prematurely (noted as “breakdown”). 
Besides, the GPS data from the AVL device on 

each bus plying on the route was provided. 

However, these data were not segregated into the 

two directions of each route. The data contain the 

details of all the buses running on the specific 

routes: the bus identification number, the timestamp 

of when the GPS data was transmitted every 10 

seconds, the coordinates of the bus movement for 

this 10-second frequency, and the instantaneous 

speed for the corresponding timestamp (Table 3). 

For our analysis, we considered the route-geometry 

data, bus stop locations, and GPS data. 

 

Figure 1: Sample of 25 bus routes in Delhi 

Table 1: Example of route-geometry data for 

route 239DOWN 

 
DO: Distance from origin 
SL : Segment length 
 

Table 2: Example of bus stop location data for 

route 239DOWN 

 
 

Table 3: Example of bus-based GPS data for 

route 239 

 
7.2 Travel-time estimation 
We compared two different approaches to process 

the GPS data from the buses to assess the link travel 

time and speed for the sample of routes. The link is 

defined as the road section between two consecutive 

bus stops. In the first approach, we used bus stops as 

the unit of reference. Buffer areas were created 

around each bus stop. Speeds were estimated based 

on the instances of the first detection of the buses in 

these buffers (approximately as the arrival times of 

the buses). In the second method, the buses were the 

unit of reference. Buffer areas were created around 

the GPS locations of the buses, and travel times (and 

speeds) were derived from the first instances of 

when the buses changed the links, i.e. crossed the 

bus stops (approximately the departure times of the 

buses).  
 

 

 
Figure 4: Link Travel-Time and speed estimation 
 

This needed the identification of the bus 

direction. Note that a U-turn can occur along the 

route, not necessarily at the terminus. For each GPS 

coordinate, a link search algorithm was applied in 

the sequence order of the current route, starting from 

the first link of the route. This allowed detecting a 

change in direction when the next link position is 

found before the previous link position. Once the 

link position was found, the curvilinear distance 

from the upstream stop of the link was computed. 

This distance was also used to anticipate either the 

detection of a U-turn (when distance decreased) or 

the arrival at the terminus (when distance equals the 

link length).  
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Method 2 differs from method 1 in that method 1 

considered arrival times of the buses within the 

vicinity of the bus stop, and method 2 considered 

the departure times of the buses from the bus stop. 

Results showed that differences in the speed 

estimates by the two methods were statistically 

significant for only less than ~10% of the links, and 

there was no significant difference in the headway 

estimates. Method 2 is however chosen because of 

the number of missing data, many buses are not 

detected in the buffer region of the bus stops leading 

to fewer observations. 

 

7.2.1 Estimation of link travel times and speeds 

In this method, link travel time was estimated using 

the following equation: 

                           

(17) 

Where Ti is the travel time on the link, D is the 

departure time of bus j from the bus stop, e is the 

endpoint (or buffer) of the link, and s is the start 

point (or buffer) of the link. It is important to note 

that the travel time is computed from the difference 

of the approximate arrival times of the bus at two 

consecutive stops.  
Thus, it is inclusive of the dwell time 

experienced at the start of the link, i.e. the first stop 

of the link. Also, speeds greater than 50 km/h were 

disregarded for the estimates of the mean and SD. 

This is because link speeds greater than 50 km/h 

implies even higher instantaneous speeds for buses, 

which is not feasible. Such kind of estimates is 

likely results of the errors that arise sometimes in 

GPS data and are thus discarded. 
 

7.2.2 Estimation of headways 

The headway  of a bus j+1 at the bus stop a 

was estimated using the following equation: 

  𝐻𝑎
𝑗+1

=  𝐷𝑎
𝑗+1

−  𝐷𝑎
𝑗
 (18) 

Where  is the schedule. As a bus stop may 

belong to several routes, attention was taken to 

satisfy this property when computing the headways. 

 

8- Results 

The Gini coefficient is an inequity measure, 

however if all buses were late as compared to 

their schedule with the same amount of time, 

the Gini coefficient is equal 0, it is closer to one 

when there is no similarity at all between the 

schedule and the observed headways. This helps 

to identify the most irregular bus routes in a 

network and the black spots on a bus route. 

 

8.1- Regularity at bus routes  
Comparing the respect of the schedule of four 

different bus routes.  

As shown in (Figure 5) the bus line 165 is the one 

with the more regular headway, - from the passenger 

point of view.  

 
Figure 5a. Direction “UP” 

 

 
Figure 5b: Direction “DOWN”. 

Figure 5: Lorenz curves of four bus routes: lines 

165, 185, 403 and 507. 
 

X-axis: cumulated proportion of buses (sorted by 

increasing  observed/ scheduled headway ratio). 
Y-Axis: cumulated proportion of observed /  

scheduled headway ratio. 
Considering the number of minutes less or more 

versus the scheduled headway for the two directions 

UP and DOWN the modified Gini coefficient is 

equal respectively to 0.21 and 0.23. The most 

irregular is the bus route 403 CL with a modified 

Gini coefficient of 0.52 for the UP direction and a 

0.59 for the DOWN. Making a deeper analysis, we 

notice from the Lorenz curves that bus routes 

403CL and 185 have the same amount of long 

observed headway as compared to the schedule 
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(common higher part of the Lorenz curve), while the 

line 403 CL is more bunched than 185 with very 

short headways, forming what is commonly called a 

“train of buses”. In the DOWN direction, bus routes 

185 23 and 507CL have very comparable regularity 

(modified Gini coefficients are 0.45, respectively 

0.47). The Lorenz curves show occurrences of 

slightly higher ratios (observed headway longer than 

scheduled). 
 

8.2 Regularity at bus stops 
The Gini coefficient is computed at all the bus stops 

of the different bus routes of our New Delhi sub-

network. Figures 6 gives the Gini coefficient at the 

stops ordered from the origin to the destination of 

the direction UP (the contrary of Down). It is 

normal to have differences in the stop names and 

sometimes on the itineraries of both directions, in 

that case, we suppressed the corresponding bus 

stops. We also suppressed bus stops on the two 

directions when there are missing data in one 

direction. Results show many missing data at the 

origin and destination of the bus routes. 
For many bus routes, the Gini coefficient tends 

to increase from the origin to the destination; when 

superimposing the evolutions of the Gini 

coefficients of both directions according to the 

stops, the curve “UP is increasing, whereas the 

curve “Down” seems to decrease since the order of 

the stops is reversed (Figure 6 and 7). This finding 

confirms the observations of [17], who found that 

the regularity of the line decreases systematically 

over consecutive stops. However, this is not the case 

for circular bus routes such as 507CL (Figure 8b)  
 

 
 

Figure 6: The Gini coefficient value at bus stops in 

the two directions UP and DOWN for a High 

Frequency & Long Route – Bus Route 165.  
 

 
 

Figure 7: Bus Route RL-77, High Frequency & 

Short Route 

 

 

    
 

 

Figure 8.a Map of circular line 507. Both directions 
 

Figure 8b: Circular Line 507CL. Gini by stop 
 

 

8.3 The Lorenz curve as a tool of the 

regularity analysis  

 
8.3.1. The example of the Prem-Nagar 
Figure 9 contains the Lorenz curve of the stop Prem 

Nagar in both directions (UP and DOWN) of line 

165 in New Delhi. It is the 41st stop of the UP 

direction and the 12th at the DOWN direction.  
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Figure 9: Lorenz curves of 

{Observed/Schedule} headways at Prem_Nagar 

bus stop of bus route 165 for the 2 directions 

UP and DOWN, the 23rd September 2016. 

 

With a higher GINI coefficient in the UP 

direction, line 165 UP appears less regular than line 

165 DOWN at the stop Prem-Nagar, either because 

congestion or incidents are more frequent in UP 

than in DOWN, or because the fulfillment of the 

scheduled headway deteriorates along the line - 

Prem Nagar is the 41st stop in the UP direction, 

farther from the origin than it is in the DOWN 

direction. 
 

8.3.2 Lorenz Curve Derivative Characteristics at 

Prem Nagar 

The series {xr} characterizing the Lorenz Curve 

derivatives for Prem Nagar provides deeper analyses 

and comparisons between 165 UP and 165 DOWN.  
 - [0,  x0.07] corresponds to Part 0. x0.07 is lower in 

sense DOWN (3.5%) than in sense UP (10%); 

referring to the data validates the assumption that 

Part 0 corresponds to bunched buses -2 bunched  

- Between x0.07 and x0.75 are observed headway 

ratios shorter than scheduled.  x0.75 is higher in UP 

(51%) than in DOWN (32%). Although this is 

positive for some travelers in UP, we will see below 

that it is the backlash of difficulties on UP. 

- Part 1, from x0.75 to x=1.25, is larger in Down (from 

32% to 58%) than in UP (from 51% to 63%), 

indicating better operations in DOWN  

- As x2=81% in both directions, Part 2 = ]x2,1] 

addresses the same proportion of buses (missing 

bus, missing data, number of buses whose delay has 

worsened by more than one scheduled headway than 

the delay of the previous bus. 

However the operations are more deteriorated in 

the UP direction (incident or congestion), where the 

higher ratio is more than 5: Indeed the 

characteristics (x4=95.%) and (x5=98%) exist only 

on UP, implying the existence of three additional 

misery indicators (x4 –x3), (x5 –x4), and (1-x5). This, 

in turn, implies many observed short or very short 

headway ratios, for buses passing just after the end 

of the incidents. That’s why the proportion of short 

headway ratio sx0.75 is higher in UP than in DOWN. 
 

 

 
 

Figure 10: Bus proportions for Part 0, Part 1, Part 2 

at Prem Nagar (both directions). 
 

9. Conclusion 

The Gini coefficient, based on the ratio of 

observed to scheduled headways is an indicator 

of the adherence to the schedule; its value is 0 

in the case of perfect adherence, thus in case of 

perfect operations; it is 1 in the most abnormal 

case of all buses bunched. The operator is 

alerted by a high Gini coefficient, computed on 

particular stops or days. The value of the Gini 

coefficient is comprehensive: an equation gives, 

in an idealistic case, the impact of any single 

traffic disturbance on the GC.  Comparing 

different bus lines, or comparing different parts 

of the day (peak/off-peak.) requires, before 

computing the Gini coefficient, some 

homothetic modifications of the ratios in order 

to accord with the average bus frequencies. We 

address here the Lorenz curve, which gives the 

cumulative percentage of ratio spent against the 

cumulative percentage of buses (ordered by 

increasing ratios). Then we focus on the 

derivative of the Lorenz curve, which provides 

new indicators detailing different proportions of 

buses with respect to the adherence to 

scheduled headway: bunched buses, buses with 

an observed headway close to its scheduled one, 
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buses with an observed headway twice (or 

more) than the scheduled one, etc..   

When computed on the modified ratios, these 

new indicators are standardized with regard 

gain or loss of waiting time. Their values are 

comparable when applied for different parts of 

the day or for bus lines with different 

frequencies.  

Once computed, the Lorenz curve helps the 

operator to identify the regularity of the bus line 

at a glance. We presented here an application on 

a part of the New Delhi bus network. We 

believe that this will complement the 

knowledge that operators already have on the 

network they manage.  

The perspectives are twofold: (1) addressing 

the advantages and drawbacks of this 

coefficient compared with others (standard 

deviation of headway) – (2) Adding to the 

observed or scheduled headway, the observed 

or scheduled travel time from previous to 

current stop. Then making the ratios and 

applying the whole process. This would provide 

a different ranking of buses, suitable for the 

point of view of the traveler, who is sensitive to 

his entire journey time. 
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