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Abstract: Navigation systems are constantly demanding for exploding system performance and 

minimizing system size. They require higher accuracy, reliability, robustness against jamming, 

impossibility to intercept and ability to fit very small compartments. Low-cost inertial sensors are 

described by high noise and large doubts in the outputs such as bias, scale factor, drift and non-

orthogonality. So, errors associated with a low-cost microelectromechanical systems (MEMS) in terms of 

position, velocity and attitude grow rapidly in standalone mode. If decent performance can be reached 

with low-cost inertial measurement unit (IMU), the cost of real applications can be reduced and the 

growth of new applications may be made feasible. The technique to advance the accuracy is 

supplementing the IMU with some aiding sources; for example, global positioning system (GPS) or digital 

compass. This motivates the system-integrators to enhance the performance by integrating the long-term 

GPS accuracy with the short-term INS accuracy. 
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1 Introduction 
An inertial navigation system (INS) provides 

information about position, velocity, and attitude 

based on the measurement gyroscopes and 

accelerometers which consequently measure the 

rotation rates and the specific forces. It's a Dead 

Reckoning (DR) system, which means that it doesn't 

need any external references and defined as the 

process of calculating the current position of a 

vehicle by the knowledge of previous position, 

distance travelled and measurement direction of 

motion.  Inertial Navigation System is an integrated 

system, mainly composed of an inertial 

measurement unit (IMU) and signal processing 

module. The combination of sensors measurements 

is used to determine all the navigation states using a 

signal processing which handle the model 

computations and integrations. An IMU consists of 

three of accelerometers combined together in an 

orthogonal arrangement and three gyroscopes 

arranged in the same manner as accelerometers. 

These sensors are jointly processed to obtain a full 

state estimation of the body [1]. The accuracy of 

obtaining the navigation states of the body depends 

on the grade of the IMU, such as tactical grade, 

navigation grade which their measurements can be 

used directly by strapdown inertial system algorithm 

due to their high accuracy but they are very 

expensive [2,3]. On the other hand, low-cost grade 

IMU which has the advantage of small size, light 

weight and low price suffers from high noise that 

causes the INS to deliver kilometre level positioning 

errors in just few seconds [4]. If these errors are 

minimized, then the navigation states drift of inertial 

system will be minimized. In the past few years, 

huge developments have been achieved in the field 

of low-cost sensors error estimation. These 

achievements have contributed in the industry of 

inertial sensors navigation system and made it 

possible to obtain low cost and accurate system at 

the same time. This can be clearly seen in the 

market of low-cost inertial sensors where huge 

companies can buy the processing techniques and 

knowhow of error estimation by tens of millions of 

dollars [5]. INS play a major role for various 

moving/flying platforms. It is corner stone for 

guidance and control system for both civilian and 

military applications. Inertial sensor assembly (ISA) 

is among the important components that constitute 

the various types of seeker tracking systems for 

terminal guidance phases, autonomous land 

vehicles, unmanned aerial vehicles, submarines and 

torpedoes which get benefits of such INS accuracy 

enhancement. This thesis focuses on error 

estimation techniques to enhance the low-cost 

inertial navigation systems. inertial sensors errors. 

Kalman filter is an algorithm for optimally 

estimating the error states of a system from 

measurements contaminated by noise. This is a 

sequential recursive algorithm that provides an 

optimal least mean variance estimation of the error 

states. The objective of this research work is to 
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enhance the performance of a low-cost MEMS 

based INS. To reach this goal, typical and deeply 

investigated estimation algorithms are introduced. 

These algorithms deal with different types of inertial 

sensors errors such as deterministic and stochastic 

errors. Deterministic errors are usually compensated 

through calibration process. For this purpose, an 

extensive work has to be done under this topic. On 

other hand, stochastic errors are hard to predict and 

cause the main difference between cheap and 

expensive sensors. An accurate error estimation 

technique has to be designed to raise the accuracy 

level of low-cost sensors to reach a level that 

enables it to be used with applications that require 

accurate and cheap navigation systems. To test the 

designed algorithms, they have to be implemented 

on a real time system that can be used in field 

experiments under different conditions. To achieve 

this goal, the procedure of hardware selection has to 

be well accomplished. Moreover, system integration 

and real time code implementation have to be neatly 

organized. The software process phase will include 

the development of software algorithms to 

communicate with the selected IMU and store the 

sampled data, integration and testing of the whole 

system using real-world data, estimation filter 

tuning, and finally the implementation of the 

algorithms in C++ for the use in a real-time system. 

Inertial sensors continuously calculate the position, 

velocity, and orientation of a moving object without 

the need for external references. These range from 

mechanical and optics which are extremely 

accurate, down to low cost inertial sensors which 

are not accurate enough to be used in highly 

sensitive applications. Typical applications for 

sensor systems vary from type to type according to 

various grades of sensors such as, control and 

stabilization, navigation and correction, pedestrian 

navigation, head trackers, and mobile mapping. 

Given specified initial conditions, one integration of 

acceleration provides velocity and a second 

integration gives position. Angular rates are 

processed to give the attitude of the moving 

platform in terms of pitch, roll and yaw, and also to 

transform navigation parameters from the body 

frame to the local-level frame [6]. The global 

positioning system (GPS) was developed by the US 

Department of Defence in the early 1970s to serve 

military navigational requirements. The first satellite 

was launched in 1978 and the system was declared 

operational in 1995. It is based on a network of at 

least 24 satellites (with room for six further 

satellites) orbiting the Earth in nearly circular orbits 

with a mean radius of about 26,560 km [1]. It 

calculates the satellite’s position from the 

information in the navigation message. With the 

information from at least three satellites the receiver 

can use the process of trilateration to calculate its 

own position in terms of latitude, longitude and 

altitude. The signal from a fourth satellite is needed 

to cancel the receiver’s clock bias. 

 

2 Estimation Technique for sensors 

integration 

 
The mechanization algorithm in the l-frame 

provides the position in curvilinear coordinates as 

latitude, longitude and latitude (𝜆, 𝜑, h ), the 

velocities along the east, north and up directions 

(𝑉𝐸 , 𝑉𝑁, 𝑉𝑈) and the attitude angles as a familiar 

pitch, roll and yaw (p, r, y ). Obtain rotation rates 

from the gyroscopes (𝜔𝑥 , 𝜔𝑦, 𝜔𝑧 ) which are 

measured in (rad/sec) and specific forces from 

accelerometers (𝑓𝑥 , 𝑓𝑦, 𝑓𝑧 ) which are measured in 

(m/𝑠𝑒𝑐2 ). These measurements are considered to be 

the raw data of the IMU resolved in the body frame. 

 

2.1 Error state equation 
The error state vector for the mechanization 

equations in the local-level frame consists of the 

errors along the curvilinear geodetic coordinates 

(latitude error𝛿𝜑, longitude error δλ, altitude 

error δh) as follow [8]  

  δ�̇�𝑙 = [

𝛿�̇�

𝛿�̇�
𝛿ℎ̇

] = [

0
1

𝑀+ℎ
0

1

(𝑁+ℎ) cos 𝜑
0 0

0 0 1

] [
𝛿𝑉𝑒

𝛿𝑉𝑛

𝛿𝑉𝑢
]                     (1) 

The errors along the earth-referenced velocities 

(east component error 𝛿𝑉𝑒, north component 

error 𝛿𝑉𝑛, up component error 𝛿𝑉𝑢) as follow  

δ�̇�𝑙 = [
𝛿�̇�𝑒

𝛿�̇�𝑛

𝛿�̇�𝑢

] = [
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−𝑓𝑢 0 𝑓𝑒

𝑓𝑛 −𝑓𝑒 0
] [
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𝛿𝑟
𝛿𝐴
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𝛿𝑓𝑦
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]      (2) 

Where p is the pitch angle, 𝑟 is the roll angle and 

A is the azimuth angle. The errors along the three 

attitude angles (pitch error𝛿𝑝, roll error 𝛿𝑟, 

azimuth error 𝛿𝐴) as follow 
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 [
𝛿𝑉𝑒

𝛿𝑉𝑛

𝛿𝑉𝑢
] + 𝑅𝑏

𝑙  [
𝛿⍵𝑥

𝛿⍵𝑦

𝛿⍵𝑧
]           (3) 

It also includes the accelerometers biases as 

follow [7] 
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δ�̇�𝑏=[
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]
 
 
 
 
 
 

w(t))  (4) 

where 𝛽𝑓𝑥, 𝛽𝑓𝑦, 𝛽𝑓𝑧 are the reciprocals of the 

correlation times associated with the 

autocorrelation sequence of 𝛿𝑓𝑥, 𝛿𝑓𝑦, 
𝛿𝑓𝑦.     𝜎𝑓𝑥

2  , 𝜎𝑓𝑦
2  , 𝜎𝑓𝑧

2 are the variances associated 

with the accelerometer errors.  w(t) is white 

Gaussian noise with variance equal to one. The 

gyroscopes drift as follow 

δ⍵̇𝑏=[
𝛿⍵̇𝑥

𝛿⍵̇𝑦

𝛿⍵̇𝑧
]=[
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2
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(5) 

Where 𝛽⍵𝑥 , 𝛽⍵𝑦 , 𝛽⍵𝑧 are the reciprocals of the 

correlation times associated with the 

autocorrelation sequence of 𝛿⍵𝑥, 𝛿⍵𝑦, 
𝛿⍵𝑦.     𝜎⍵𝑥

2  , 𝜎⍵𝑦
2  , 𝜎⍵𝑧

2 are the variances associated 

with the gyroscope errors.  w (t) is white 

Gaussian noise with variance equal to one. 

Finally, the state equation for the INS errors is 

             �̇�𝑙  = 

[
 
 
 
 
δ�̇�𝑙

δ�̇�𝑙

�̇�𝑙

δ⍵̇𝑏

δ�̇�𝑏 ]
 
 
 
 

                                                           (6) 

2.2  INS/GPS integration model 

The errors estimate from the EKF are fed back in 

order to correct the INS, then EKF output estimates 

are reset to zero. This type of error feedback 

mechanism is called closed loop. These errors are 

applied on iteration of mechanization, with feedback 

from EKF periodically updating the IMU errors. 

There are different INS/GPS integration models 

have been proposed to achieve the optimum 

advantage depending on the requirements and the 

applications; such as loosely coupled, tightly 

coupled and ultra-tightly coupled. The loosely 

coupled is used in this paper. In which The GPS and 

INS work independently and provide separate 

navigation solutions, the GPS output is fed to the 

EKF, also the INS solution is supplied to the filter 

which takes the difference between the two and 

estimates the INS errors. The INS solution is 

corrected for these errors to produce the integrated 

navigation solution in the form of position, velocity, 

and attitude. It is simple to implement and is robust, 

it provides two solutions for closed loop which are 

GPS raw data and the integrated solution. The main 

disadvantage is its inability to provide GPS aiding 

when the effective number of satellites falls below 

the minimum. The system model of discrete form 

EKF for loosely coupled integration is the state 

vector includes error components of position, 

velocity, attitude, accelerometer biases, and 

gyroscope drifts as 

𝛿𝑋15∗1
𝑙 = [𝛿𝑟3∗1

𝑙   𝛿𝑉3∗1
𝑙   𝛿𝜀3∗1

𝑙   𝛿𝜔3∗1
𝑙   𝛿𝑓3∗1

𝑙   ]𝑇      

(7)                     

where G is the noise distribution vector, which 

includes the variances associated with the state 

vector as follow  

𝐺 =  [𝜎𝑟,1∗3  𝜎𝑉,1∗3  𝜎𝜀,1∗3  𝜎𝜔,1∗3  𝜎𝑓,1∗3]
𝑇
     (8)                    

Where F is the dynamic matrix contains the INS 

error models for the states, which can be written as 

𝐹 = 

[
 
 
 
 
 
03∗3 𝐹𝑟 03∗3 03∗3 03∗3

03∗3 03∗3 𝐹𝑉 03∗3 𝑅𝑏
𝑙

03∗3 𝐹𝜀 03∗3 𝑅𝑏
𝑙 03∗3

03∗3 03∗3 03∗3 𝐹𝜔 03∗3

03∗3 03∗3 03∗3 03∗3 𝐹𝑓 ]
 
 
 
 
 

         (9)                                  

Where, 𝛿𝑍𝑘  is the measurement vector which 

consists of the differences between the position 

coordinates (latitude, longitude, altitude) and 

velocity components predicted by the INS and the 

corresponding values measured by the GPS as 

follow 

   δZk = 

[
 
 
 
 
 

φINS − φGPS

λINS − λGPS

hINS − hGPS

VE,INS − VE,GPS

VN,INS − VN,GPS

VU,INS − VU,GPS]
 
 
 
 
 

                           (10)      

                                   

3 Design configuration of proposed 

system 
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All sensors are connected together to set up a 

prototype INS/GPS integration system. The 

hardware implementation is shown in figure 1. 

 
Figure 1, Hardware Implementation 

 

3.1  Software design configuration 
The code is written primarily in C++ using 

object-oriented techniques and necessary libraries 

to interface between the different sensors are 

used. All of the code for numerical integration, 

matrix methods, vector methods, quaternion 

operations, and Kalman filters has been written in 

C++. Figure 2, shows the flow chart of the 

program developed to execute the EKF GPS/INS 

integration. The designed software adopts the 

loosely coupling integration strategy [1] where 

the GPS position and velocity are used to update 

the INS computed navigation solution. The six 

remaining states for the sensors errors estimations 

are neglected and these errors are assumed to be 

perfectly estimated during the intensive 

calibration procedure as discussed in the previous 

chapters. Indeed, better performance is expected 

to be obtained if a higher grade processor is 

employed and all the KF states are estimated 

together. A typical programming procedure is 

illustrated in Figure 2, where it can be seen in the 

following flowchart, the program starts from 

initializing the different sensors, then the initial 

position states are obtained from the GPS module 

and pressure sensor. As the vehicle start from 

stationary, the initial velocity components are 

equal to zero. Finally, the initial attitudes are 

computed from initial alignment sub program. At 

this point, the mechanization loop starts to 

calculate the navigation states using the initial 

values and IMU readings. During mechanization 

loop, the aiding measurements are obtained at 

certain time loop to be used in Kalman filter 

update. The correction errors for the navigation 

states are computed from the Kalman filter sub 

routine and the subtracted from the estimated 

states. These corrected states are fed back to be 

the initial states. 

 
Figure 2, Software Design Configuration 

 

3.2  INS/GPS integration system 

implementation  

In this section, the experiment in the motion 

mode starts from point (latitude 30.093283 

degree, longitude 31.376692 degree, altitude 

101.4 m) to point (latitude 30.094885 degree, 

longitude 31.376750 degree, altitude94.2 m). The 

experiment is divided into four main parts. The 

first part is the sensors outputs of MPU 6050 

without mechanization. The second part is the 

navigation solution using the MPU-6050 IMU as 

a standalone system through the sensors 

mechanization and without GPS correction. The 

third part is the KF and GPS were introduced to 

the system in order to show the KF impact to 

overcome the errors of the IMU. In the fourth part 

show what occur in GPS outage intervals. The 

resulting INS/GPS integration system navigation 

solutions using kalman filter are shown in figures 

3,4. These figures show the difference between 

the stand alone INS results in blue line and with 

the GPS aiding using the EKF INS/GPS 

integration in red line. 
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Figure 3, Position of INS/GPS Integration System 

and INS Standalone 

 

Figure 4, Position of INS/GPS Integration System 

and INS Standalone 

In figure 5, the reference trajectory by GPS only 

is by red color and the standalone INS trajectory 

is by blue color. From this figure it is clear that 

performing navigation using standalone MPU-

6050 shows that the performance is largely 

degrade with time, this is of course due to the 

accumulation errors of the noisy measurements of 

acceleration and angular rate. 

 

Figure 5, INS Only Trajectory and GPS Reference 

Trajectory 

In figure 6, the reference trajectory by GPS only is 

by red color and INS/GPS integration system 

trajectory is by blue color. From this figure it is 

clear that Integration of INS with GPS improves the 

excellence of INS performance. 

 

Figure 6, INS/GPS Integration System Trajectory 

and GPS Reference 

GPS only can be used in low dynamics applications 

but INS/GPS integration system can be used in high 

dynamics applications. Table 1, show comparison 

between three systems results. 

 

4 Conclusion 

This paper has shown the actual combination of 

multi-different sensors as (GPS and IMU), each 

with their own faintness and fortes. As the GPS has 

a long-term stability and delivers decent results, but 

it is only accomplished of determining position 

every second due to its low sampling rate. On the 

T A B L E  1  Comparison between three systems  

 INS only GPS only  
Proposed 

system 

Rate 20 ms 1s 20 ms 

Start 
Lat 30.09328 

Lon 31.37669 

Lat 30.09328 

Lon 31.37669 

Lat 30.09328 

Lon 31.37669 

End 
Lat 30.32560 

Lon 31.55968 

Lat 30.09489 

Lon 31.37675 

Lat 30.09489 

Lon 31.37675 
 

Accuracy low high high  

Used in - 

Low 

dynamics 

applications 

High 

dynamics 

applications 
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other hand, the low cost IMU has high sampling rate 

but has low short-term accuracy and cannot be 

running by itself and delivering any reasonable 

navigation information. Hence the individual 

systems by themselves are not enough to give us a 

good and accurate measure of the navigation states, 

but these sensors combined have the aptitude of 

improvement the accuracy of the INS and producing 

decent results. INS/GPS integration System using 

Kalman filter is carried out in order to gain the 

privilege of combination of the advantages of the 

short-term precision of INS and long-term stability 

of GPS. Also, an error analysis is carried out to 

stand up on the possible sources of errors in this 

integrated system. The analysis of the present study 

heads to the following conclusions, The 

combination used leads to a remarkable decrease in 

the inertial navigation system cost, Integration of 

INS with GPS improves the excellence of overall 

navigation system performance, Using of GPS 

permits calibration of inertial instrument biases, 

Using of INS improves the tracking and 

reacquisition performance of GPS receiver and 

Kalman filter provides real time arithmetical data 

related to the estimation accuracy of the error states, 

which is very valuable for measured error analysis. 

This paper has also shown the effective combination 

of multi different sensors as (GPS and IMU), each 

with their own weaknesses and strengths. As the 

GPS has a long-term stability and provides good 

results, but it is only capable of determining position 

every second due to its low sampling rate. On the 

other hand, the low cost IMU has high sampling rate 

but has short term accuracy and cannot be running 

by itself and providing any reasonable navigation 

information. Hence the individual systems by 

themselves are not enough to give us a good and 

accurate measure of the navigation states, but these 

sensors combined have the ability of improvement 

the accuracy of the INS and producing good results. 

Generally, it can be said that the integration of INS 

with GPS using Kalman filter helps improving 

strangely the accuracy of navigation data (position 

and velocity) at low cost sensors. So, the cost of real 

applications can be reduced and the development of 

new applications may be made possible. 
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