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Abstract: - In this paper 5 popular time series forecasting methods are used to predict monthly Dutch new car 

registrations. The aim is to check whether an ensemble forecast based on averaging would provide better results 

than single forecasts. Therefore, the performances of these 5 methods are assessed using a data test set of one 

year and three of them, which had sufficiently independent results, are combined into an ensemble forecast. Using 

several common performance metrics it is shown that the ensemble performs slightly better than each of these 

models separately. This is a confirmation of the idea, found in literature, that under certain conditions, a 

combination of several forecasts leads to better results.  
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1 Introduction 
The automotive industry is one of the world’s most 

important economic sectors by revenue. It is 

characterized by long development and production 

processes and therefore long-term forecasts for sales 

of new cars provide valuable information to its many 

stakeholders. Car developers and manufacturers, but 

also car dealers, marketeers and national licensing 

authorities benefit from reliable forecasts of the 

future demand for new cars. Not surprisingly much 

effort has been invested in attempts to develop 

reliable forecasting models. 

In a paper by Brühl et al. [1], the time series 

consisting of the number of newly registered German 

automobiles in the period 1992 to 2007 was used to 

train Multilinear Regression and Support Vector 

Machine forecasting models. Comparing the 

performance results, they found that the Support 

Vector Machine model with a Gaussian kernel 

performed better. Furthermore, it was found that 

models based on quarterly data were better than those 

based on monthly or yearly data. In Hülsmann et al. 

[2] several forecasting models were considered and 

used to forecast the number of new registered cars in 

Germany and the USA. It was found that the results 

of [1] could be further improved by using market-

specific absolute, normalized exogenous parameters.  

In [3] Sa-ngasoonsong et al. found a long-run 

equilibrium relationship between automobile sales 

and some economic indicators. They estimated a 

vector error correction model which outperformed 

other time series forecasting methods. Fantazzini and 

Toktamysova [4] found that forecasting models for 

monthly new registered cars in Germany which 

included Google search data as an exogenous 

variable had better performances than other models.  

Unlike in the beforementioned papers, the main 

aim of this contribution is not to consider the 

performances of models separately but rather to see 

whether an ensemble of forecasting models is 

beneficial in this case. Ensemble forecasting is a 

method to combine the results of forecasts of several 

models into one in order to achieve a better accuracy 

[5]. Usually, different models capture different 

aspects of reality and therefore they have different 

biases. When the forecast errors are not positively 

correlated the errors of these models will to a certain 

extend cancel out when the forecasts are averaged. 

This results in better forecasts. 

In this paper 5 popular forecasting methods are 

applied on the time series consisting of the newly 

registered Dutch cars and combined into one 

ensemble prediction. Its accuracy is evaluated and 

compared with the individual model results and that 

of a naive method based on the seasonal component.   

 

2  New Car Registration Data 
New cars have to be registered with the national 

authorities before they may be sold on the Dutch 

automobile market. For this research, monthly data of 

new car registrations ranging from January 2007 until 

April 2017 were used.  

Visual inspection of the original time series 

(dashed line) in Fig. 1 reveals a seasonal component 

and several notable spikes in June 2012 and in 

December of the years 2012 to 2016. These spikes 

are followed in the next months by remarkable low 

figures. This unusual pattern in the time series is the 
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result of government intervention. In the months after 

each of these spikes, previously announced tax 

measures were enforced by the Dutch government in 

an attempt to discourage the use of certain types of 

cars and/or to encourage others. The spikes are 

therefore regarded as a result of stocking-up behavior 

by car dealers in order to avoid the new tax measures 

coming into force the next month. 

 

 
Figure 1: In the original time series of new registered 

cars (blue dashed line) large spikes as a result of 

government tax measures have been removed and 

spread out over the following 4 months resulting in 

the solid black line.  

 

The occurrences of these  spikes are easy to predict 

due to the fact that tax measures are announced in 

advance. However, they do not fit the time series 

models considered here. Because spikes are a 

temporarily disturbance of the dynamics of the time 

series and because they can be simply forecasted by 

hand, they are removed from the time series. It is 

reasonable to assume that the extra car registrations 

at the time of these spikes would have occurred in 

later months in case there had been no change in the 

tax regime. The extra number of registrations as 

compared to the average of that particular month are 

spread out equally over the 4 months following the 

peak. The analysis done in this paper concentrates on 

the resulting corrected time series. 

 

3 Forecasting Methods 
In this study the following forecasting models were 

applied on the data.   
 

3.1 Exponential Smoothing 
Exponential smoothing (ETS) is a popular 

forecasting method in business because of its 

simplicity and relative good performance. In the 

ETS-model future values of a time series are 

weighted averages of all past values. The weights 

decrease exponentially into the past so that more 

weight is given to the most recent values. Because 

our time series has an additive seasonal component 

we use the Holt-Winters exponential smoothing 

method also called triple exponential smoothing [6]. 

The prediction formula is as follows. 

     

 �̂�𝑡+ℎ = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠[𝑡−𝑚]∗ (1) 

 

with �̂�𝑡+ℎ the estimation of the ℎ step ahead value of 

the time series under consideration and level 𝑙𝑡 =
𝛼(𝑦𝑡 − 𝑠𝑡−12) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1), trend 𝑏𝑡 =
𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1, seasonal component 

𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−12 and where 
[. ]∗ indicates that from the data the most recent 

corresponding month should to be taken. Optimal 

values for the parameters 𝛼, 𝛽  and 𝛾  are estimated 

during the training process.   

 

3.2 Autoregressive Integrated Moving 

Average 
Autoregressive Integrated Moving Average 

(ARIMA) models are generalizations of the simple 

AR model. The AR part of ARIMA indicates that the 

dependent variable is regressed on its own lagged 

values. The “I” indicates that the dependent variable 

may be differenced (once or more times) in the case 

the time series of the dependent variable is not 

stationary. Finally, the MA part indicates the option 

that the regression errors may be a linear combination 

of past values of errors. An ARIMA(p,d,q) model for 

a time series of 𝑌𝑡 may be written as 

 

 
�̂�𝑡

′ = ∑ 𝛼𝑖𝑌𝑡−𝑖
′

𝑝

𝑖=1
+ ∑ 𝛽𝑖𝜖𝑡−𝑖

𝑞

𝑖=1
+ 𝜖𝑡 (2) 

 

where 𝑌𝑡
′ = ∆𝑑𝑌𝑡 , the difference of 𝑌𝑡 of order d. 

Furthermore, p and q denote the number of maximal 

lags in 𝑌𝑡 and 𝜖𝑡 respectively and 𝜖𝑡 is the regression 

error.  

 
 

Figure 2: Schematic view of an Artificial Neural 

Network consisting of 3 input cells, 5 cells in the 

hidden layer and one output cell. During the training 

of the network the weights of the connections 

between the cells are optimized. 
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3.3 Artificial Neural Network 
Artificial Neural Networks (ANN) are nonlinear 

autoregression models, biomimetically inspired by 

the neurons in the biological brain. An ANN consists 

of a number of artificial neurons that can pass signals 

of varying strength to each other (see Fig. 2). If the 

combined incoming signals are strong enough, the 

neuron becomes activated and the signal travels to 

other neurons connected to it.  

ANN’s have to be trained from examples, and 

cannot be explicitly programmed. That is why this 

model is often applied to problems where the solution 

is difficult to express in a traditional computer 

programming language. 

 

3.4 Vector Auto Regression 
The Vector Auto Regression (VAR) model is a 

multivariate generalization of the AR model. The 

VAR-model allows the inclusion of time series which 

are expected to be linearly interdependent of each 

other. Each variable has its own equation containing 

its own lagged values and those of the other variables 

in the model and is therefore explained by its own 

history and that of the other variables.  

An example of a VAR-model based on 3 variables 

𝑌1,𝑡, 𝑌2,𝑡 and 𝑌3,𝑡 is shown in (3). 

  

 
�̂�1,𝑡 = 𝑐1 + ∑(𝛼1,𝑖𝑌1,𝑡−𝑖

 + 𝛽1,𝑖𝑌1,𝑡−𝑖
 + 𝛾1,𝑖𝑌1,𝑡−𝑖

 )

𝑝

𝑖=1

+ 𝜖1,𝑡

�̂�2,𝑡 = 𝑐2 + ∑(𝛼2,𝑖𝑌2,𝑡−𝑖
 + 𝛽2,𝑖𝑌2,𝑡−𝑖

 + 𝛾2,𝑖𝑌2,𝑡−𝑖
 )

𝑝

𝑖=1

+ 𝜖2,𝑡

�̂�3,𝑡 = 𝑐3 + ∑(𝛼3,𝑖𝑌3,𝑡−𝑖
 + 𝛽3,𝑖𝑌3,𝑡−𝑖

 + 𝛾3,𝑖𝑌3,𝑡−𝑖
 )

𝑝

𝑖=1

+ 𝜖3,𝑡

 

 (3) 

In [3] and [4] economic variables were used as extra 

variables. Economic variables reflect the state of the 

economy and it is assumed that this influences 

potential customers in their decision whether or not 

to purchase a new car. For this research several 

combinations of economic time series were 

considered to be included in the model. Based on 

their performance, Job Vacancies Index and Car 

Prices Index were selected as explanatory variables 

in this model. 

3.5 Theta 
The theta method [7] has caught interest in academic 

circles and among forecast practitioners due to its 

remarkable good performance for monthly series at 

the M3-forecasting competition [8]. The original 

description of this univariate model is rather 

involved. It is based on decomposition of the time 

series through second order differences into so-called 

Theta-lines to capture long-term behavior and short-

term features separately. Hyndman and Bilah [9] 

however, found that for a large training set the Theta 

method is equivalent to simple exponential 

smoothing with drift.  

3.6 Naive Seasonal 
Finally, as a benchmark to evaluate the performance 

of the prediction models, the average monthly figures 

are used as a naive forecast. In an activity as future 

prediction it is recommendable to check if a 

sophisticated model is indeed an improvement with 

respect to simpler methods because, as said before, 

sometimes simple models perform better than 

difficult ones. Several common performance metrics 

(see Section 5.1) for the results of the models 

described above are calculated and compared to those 

of the naive seasonal model.  

 

4 Results 
The data were split into a training set and a test set. 

For the training set we used the monthly data from 

January 2007 to April 2016. This time series contains 

112 data points. The above explained forecasting 

methods were applied to the training set to estimate 

the parameters of these models. After this, the trained 

models were used to create forecasts for the test set, 

the 12 months period from May 2016 to April 2017.   

The results were calculated using the statistical open 

source language R. The univariate Holt-Winters ETS, 

ARIMA, NNET and Theta models have been 

estimated using the forecast package [10] while the 

VAR model was established using vars package 

functions [11].  

4.1  Check of the Model Output Properties 
To see whether the predictive models could be 

improved a few checks have been conducted on its 

residuals. 

  

 
Figure 3: The residuals of the Holt-Winters model 

have more or less a constant variance, no significant 

autocorrelations and approximately a Normal 

distribution with mean zero.  
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In the top left of Fig.3 the in-sample residuals of 

the Holt-Winters model forecast are displayed. One 

can visually establish that the variance is more or less 

constant over time. Furthermore, in the top right of 

Fig. 3 one can see that no autocorrelations at lags 1-

20 of the in-sample forecast errors greatly exceed the 

significance bounds at the dotted lines. This indicates 

that there is little evidence of non-zero 

autocorrelations at lags 1-20. In the lower part of the 

figure a histogram of the residuals with overlaid 

normal curve and a QQ-plot is displayed. From these 

pictures it seems plausible that the forecast errors are 

normally distributed with mean zero.  

We may conclude that the Holt-Winters model fits 

the new car registrations appropriately and that it 

provides a forecast that probably cannot be improved. 

The same analysis as above has been conducted 

with respect to the other models. 

For establishing the ARIMA model, the Box-

Jenkins methodology [12] was applied which lead to 

an ARIMA(2,1,0)(1,0,0)12 model i.e. a differenced 

second order autoregressive model with a first order 

seasonal component of 12 months. The in-sample 

residuals and its properties are displayed in Fig.4. 

 

 
Figure 4: The ARIMA model residuals have more or 

less a constant variance, no autocorrelations and 

approximately a Normal distribution with mean zero.  

 

A neural autoregressive network was estimated with 

4 hidden nodes, 7 time lags and a seasonal 

component. See Fig.5 for its residual properties. 

Again the conclusion can be drawn that the model fits 

the data quite well and probably cannot be further 

improved without changing the model itself.  

The VAR model used in this project contains 2 

explanatory economic variables, namely Job 

Vacancies Index (JVI) and Car Prices Index (CPI). 

The rationale behind this choice is that demand for 

new cars tends to raise when more people acquire a 

(better) job and/or when car prices are low.  

Several conditions are necessary to be fulfilled 

when creating a VAR model. First, it was checked 

whether these three time series are stationary. Using 

the Augmented Dickey Fuller test it was found that 

differencing was required in the case of JVI and CPI 

to acquire stationarity. 

 

 
Figure 5: In-sample residuals plots of the ANN 

model.  

 

Secondly, the autocorrelations of each of the time 

series were checked. See Fig.6 for the autocorrelation 

plots of the new car registrations. It shows that 3 lags 

seem appropriate for the AR part of the model.  

 

 
Figure 6: Plots of the autocorrelations and partial 

autocorrelations of the deseasonalized time series of 

the number of new car registrations. 

  

 
Figure 7: The residuals of the VAR model have more 

or less a constant variance, no autocorrelations and 

approximately a Normal distribution with mean zero.  
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This choice was confirmed by Akaike’s Information 

Criterion. Finally, the model was estimated using the 

training data and its residuals were analyzed (see 

Fig.7). From the figure the residual properties are 

deemed satisfactory. 

Finally, the Theta model was estimated. As with 

the other models the residuals were checked 

graphically (see Fig. 8) and it was concluded the 

model cannot be further improved. 

In short, the residuals of all 5 estimated models 

have the same desirable properties (zero mean, 

constant variance, Normally distributed). 

 

 
Figure 8: Several displays of the residuals of the 

Theta model to show its properties. The residuals 

seem more or less to have the necessary properties. 

4.2  Establishment of the Ensemble 
In [5] it was recommended to average the results of 

at least 5 different forecasting models which do not 

correlate positively. In such a case forecasting errors 

tend to single each other out which would result in a 

more accurate forecast. The correlations between the 

model forecasts were calculated and displayed in 

Fig.9. It can be seen that the outcomes of some 

models correlate exceptionally well.   

 

 
 

Figure 9: Some of the forecast results of the models 

under consideration are highly correlated. Therefore, 

it was decided to remove the ARIMA and VAR 

models from the Ensemble forecast. 

An explanation for this could be that ARIMA and the 

Holt-Winters models are both linear functions of 

lagged values of the time series and since both 

models are optimized on the data they have probably 

assigned comparable weights to them. The high 

correlation between the VAR model and Theta model 

is the result of their property that after a few time 

steps the forecasts tend to converge to the seasonal 

pattern.  

Heeding the recommendation above, it was 

decided to leave out the least performing two of these 

models (i.e. ARIMA and VAR) and combine the 

remaining three models into an ensemble forecast.  

The real data of the test period, the forecasts of all 

the models and the Ensemble based on three models 

have been plotted together in Fig.10 for visual 

inspection.  

 

5 Performance Evaluation 
In this section the model forecasts and the forecast of 

the combined models at the test data period are 

compared with the real outcomes. This gives an 

impression about the performance capability of these 

models if they were to be used for real forecasts.   

 

 
Figure 10: Forecast results of 5 models on the 12 

months test set. The thick black line represents the 

real outcome of the new car registrations time series 

and the brown line is the Ensemble forecast. 

 

5.1 Forecasting Performance 
The models’ performances are compared with each 

other using several standard evaluation metrics which 

are based on the forecast errors 𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 .  

 

The Mean Error 

 
𝑀𝐸 =

1

𝑛
∑ (𝑦𝑡 − �̂�𝑡)

𝑛

𝑡=1
 (10) 

 

The Mean Absolute Error 

 
𝑀𝐴𝐸 =

1

𝑛
∑ |𝑦𝑡 − �̂�𝑡|

𝑛

𝑡=1
 (11) 
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The Mean Absolute Prediction Error 

 
𝑀𝐴𝑃𝐸 =

1

𝑛
∑

|𝑦𝑡 − �̂�𝑡|

|𝑦𝑡|

𝑛

𝑡=1
100% (12) 

   

The Root Mean Square Error 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡 − �̂�𝑡)2

𝑛

𝑡=1
 (13) 

 

The Maximum Absolute Error 

 𝑀𝑋𝐴𝐸 = max
𝑡

|𝑦𝑡 − �̂�𝑡| (14) 

 

Obviously, the lower the outcomes of these metrics 

the better the performance of the corresponding 

model. The metrics are applied to each model and are 

listed in Table 1 for easy comparison.  

 

Forecasting Performance Metrics 

Calculated over a 12 Months Test Set 
          

           Metric          
 

 Model 
ME MAE MAPE RMSE MXAE 

ETS -3188 3580 11.7% 5079 10200 

ARIMA* -5790 5790 19.1% 7018 12994 

NNET 1104 4215 12.6% 5041 9469 

VAR* -4463 4517 15.6% 5785 9841 

THETA -3080 3796 13.1% 4975 9989 

NAIVE* -3706 3722 12.9% 4991 9555 

ENSEMBLE -1955 3348 11.1% 4113 8391 

Table I: Comparison of the forecasting performances 

of the 5 models individually, the Naive seasonal 

model and the Ensemble. Models indicated with an 

“*” are not included in the Ensemble. The best 

performance figures are printed in italics. 

 

6 Conclusion 
In this paper 5 common forecasting models have been 

applied on a training set of 112 months of new car 

registrations. The results of a 12 months ahead 

forecast on a test set were evaluated. It turned out that 

the Exponential Smoothing outperformed the other 

individual models.  

Interestingly, the naive seasonal model performed 

better than ARIMA and VAR, which happen to be 

the most sophisticated models in this study.  

Furthermore, it was shown that the Ensemble 

forecast based on the ETS, NNET and Theta models 

performs slightly better than each model individually 

which is in confirmation of [5]. This shows that even 

with only a few available models, one can improve 

forecast accuracy.  
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