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Abstract: - Ubiquitous sensing a critical enabler for intelligent transportation systems is becoming a reality due 
to recent advancements in wireless sensor networks. Internet of Things paradigm provides the necessary tools 
to define how the information should be gathered and shared across different platforms. Intelligent 
transportation systems, effected by this transformation provides wide range of applications in areas such as 
routing, smart logistics, assisted/autonomous driving, environmental monitoring etc. These applications require 
a high level of initial investment in terms of infrastructure. Therefore, efficient resource management and 
service pricing is essential for attracting the customers who will use and/or share data provided by the 
platforms/customers.  The mechanisms in place have to manage efficiently the flow of data on possibly 
unpredictable network conditions. Data pricing, an instrument that captures users’ utilities, provides users’ right 
economic incentives and manages network congestion especially in high demand periods. In this paper, a 
framework based on game theory with a data exchange regulator is proposed to deal with data pricing. The 
framework considers effects of price and quality variations on demand hence on utilities of service providers. 
The provided case study demonstrates applicability of the proposed methodology. 
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1 Introduction 
The Internet of Things’ (IoT) promise of “smart, 
connected” products offer huge opportunities for 
new functionalities and capabilities and possibly 
disrupt value chains and force companies like 
General Electrics, Google,  Amazon, etc. to reshape 
their product/service offerings. They have to come 
up with new sets of strategies to define how value is 
created [1]. The most basic element of this new 
phenomenon is the data generated as a byproduct 
and once again fed into the system to enhance the 
product/service. IoT possibly could contribute in 
areas of assisted living, e-health, enhanced learning, 
automation, industrial manufacturing, logistics, 
business/process management, intelligent 
transportation of people and goods [2]. However, it 
is for a typical disruptive technology, IoT 
necessitates new scenarios and product propositions. 
It requires some sort of intelligence to be embedded 
into the framework to connect everyday existing 
objects [3]. As foreseen by Gubbi et al [3], IoT 
requires: “(1) a shared understanding of the situation 
of its users and their appliances, (2) software 
architectures and pervasive communication 
networks to process and convey the contextual 
information to where it is relevant, and (3) the 

analytics tools in the IoT that aim for autonomous 
and smart behavior.” These requirements are 
actually transforming even product-oriented 
organizations into service providers along with their 
product offerings. If organizations were able to 
deliver in all these aspects, the outcome would be 
smart connectivity and context-aware computation. 

In literature, there are works describing possible 
effects of IoT on Intelligent transportation systems. 
Atzori et al. [2] suggest that IoT will help to better 
route traffic, monitor the status of goods in 
movement in real-time along the supply chain, avoid 
collusions, monitor transport of hazardous materials, 
regulate traffic jams and improve efficiency of food 
supply chains in prolonging shelve life [2].  Ibanez 
et al. [4] discuss possible goals that should be part 
of any intelligent transportation system, and 
categorize them as safety and personal security, 
access and mobility, environmental sustainability 
and economical development. These goals require 
minimization of CO2 emissions, improvement of 
traffic efficiency, and road safety, as well as 
reduction of vehicle wear, transportation times and 
fuel consumption. [4] Ibanez et al. also define 
intelligent transportation systems with IoT: radio 
frequency identification tags and readers, sensor 
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technologies, which will be used collect information 
about traffic conditions in the environment. These 
sensors should detect speed, direction, travel times, 
send this information for further analysis, in order to 
make intelligent decisions such as dynamic traffic 
light management and changing of number of lanes 
[4].  

However, the development of such a framework 
is not straightforward. Integration of information 
and communication technologies along with the 
implementation of adequate and necessary 
technologies and infrastructures in vehicles, roads, 
streets and avenues is a prerequisite [4]. The initial 
step for integration should deal with the large 
amount of data, that is usually kept in independent 
databases, to be collected, processed and fed back 
on real-time if possible to the users’ of the system. 

As demonstrated by Hoang and Niyato [5], 
processed information delivered as a service to 
customers, may establish new revenue streams for 
intelligent transportation system service providers. 
However, the quality of service levels in case of 
intelligent transportation systems suffer from 
possibly constrained network conditions. Sen et al. 
[6], with their “smart data pricing” mechanism, 
aimed to understand users’ behaviors and proposed 
dynamic adaptation to different network traffic 
conditions using economic models for computing 
prices.  

In this work, a framework for sensor data 
management and service price competition among 
data providers in smart transportation systems is 
proposed. The framework aims to optimized 
providers’ utility functions by analyzing consumers’ 
behaviors in response to price and quality level 
changes. Game theory is applied to calculate 
customer’s demand along with the prices and 
utilities of service providers’. The applicability of 
the proposed methodology is demonstrated via a 
case study. The scenarios as part of the case study 
are used to illustrate the effect of different behaviors 
on the utilities and prices; hence, suggest a 
recommended action for service providers. 

The remainder of the article is organized as 
follows: in Section 2, related literature is 
summarized. Section 3 presents the methodologies 
that constitute the proposed methodology. The 
details and implementation of the proposed 
framework is demonstrated through a case study in 
Section 4. Section 5 concludes the study discussing 
the findings and further study possibilities. 
 
 

2 Related Work 
Although, there are different definitions and 
perspectives for IoT, numerous researches define 
IoT as a new paradigm in an era of ubiquitous 
computing.  Internet-oriented, things-oriented and 
semantic-oriented perspectives of IoT represent 
different aspects of the topic [2]. Hence, 
interdisciplinary nature of IoT effected the diversity 
of application domains and open research issues. 
Smart transportation systems, as part of IoT domain, 
similarly, attracts attention among research 
community. This section summarizes some of the 
recent work that formed the base of this study. 

Stefansson and Lumsden [7] established the 
conceptual model of the smart transportation 
management system and analyzed how different 
factors change the performance of distribution 
activities and discussed management issues. Their 
framework is developed through case studies with 
the involvement of software providers, logistics 
service providers and carriers. The framework 
makes use of state-of-the-art vehicle information 
systems and infrastructure systems. 

In their work, Ibáñez et al. [4] introduced 
emerging technologies, such as connected vehicles, 
wireless technologies, etc. as part of smart 
transportation systems. They suggested that IoT will 
enable seamless integration of different systems 
resulting in sustainable transportation solutions. 
They concluded their study with the discussion of 
integration challenges and issues faced by the 
transportation sector. 

Niyato et al. [8], proposed smart data pricing for 
IoT systems and services. They defined an IoT 
architecture and based on the architecture they 
presented possible business models and suggested a 
pricing scheme for IoT service providers. Their 
model demonstrated via a case study sensing data 
buying and selling with cooperation among service 
providers. They showed that service bundling could 
result in a higher profit level for service providers. 

Hoang and Niyato [5], proposed a business 
model for competitive pricing in an Internet-of-
Vehicle environment. Their competitive game 
model obtained prices for providers through Nash 
equilibrium solution. They also demonstrated that 
repeated game models could result in higher 
revenues for service providers. The efficiency of 
their proposed model is demonstrated using 
simulation results. 

In their work, Vardakas et al. [9] provided a 
comprehensive review of various demand response 
schemes and optimization models for the optimal 
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control of demand response in smart grids. They 
also categorized optimization models based on the 
objective of the optimization model, the ability to 
include uncertainties, scalability, responsiveness, 
communication requirements and support of 
multiple load types. 

Sen et al. [6] used smart data pricing approach to 
control network congestion by modifying users’ 
behaviors. Their proposition was to create right 
economic conditions in order to shift users’ demand 
to less congested times or to supplementary 
networks. They evaluated two different pricing 
schemes through case studies: time-dependent 
pricing and traffic offloading. They suggested that 
smart data pricing could be readily applied to 
machine-to-machine communication and IoT 
applications. 

 
3 Proposed Methodology 
Data pricing models as reviewed by Sen et al. [6] is 
depending on different factors, such as, usage-based 
pricing / metering / throttling / capping, time / 
location / congestion-dependent pricing, app based 
pricing / sponsored access, Paris metro pricing, 
quota-aware content distribution, reverse billing or 
sponsored content. Dynamic pricing with real-time 
changes in prices, although applied scarcely in real-
life scenarios aims to respond to network congestion 
and fluctuations in quality of experience of the 
consumers’.  

Dynamic pricing necessitates setting prices based 
on the reactions of competition. Hence, analyzing 
market dynamics and behaviors of actors in the 
market is a prerequisite. This knowledge is usually 
obtained by answering questions like: “What action 
to choose in a competitive environment?” and 
“What are other companies doing?” [10]. 

As stated by Sen et al. [6], Niyato et al. [8] and 
Vardakas et al. [9], game theoretical framework is 
much suited for dynamic pricing scenarios. Game 
theory typically deals with conflict and cooperation 
among actors in a marketplace. It provides a basis 
for formulating, structuring, analyzing and 
understanding different strategic scenarios [11]. 

Game theoretical models start with the definition 
of actors, their preferences, their information, 
possible strategic actions and their outcomes in a 
given state. Different real-life scenarios are also 
explored with these models, such as the possibility 
of cooperation [12]. There are several intrinsic 
assumptions such as rationality of game’s actors. A 
rational actor should always choose the action that 

gives the most preferred result in view of the 
expected reactions of competitors.  

In this work, as part of smart data pricing 
approach, a dynamic pricing model with non-
cooperative nature with rational actors is assumed. 
Solution approach is built upon on Nash equilibrium 
concept.  The Nash equilibrium as the name 
suggests defines a point where actors in a game after 
having chosen strategies, do not reconsider their 
strategies, as they are not able to increase their 
utilities while the other players keep all their 
strategies unchanged. At this point, the set of 
strategic choices and corresponding utilities 
represent the Nash equilibrium. 
 
4 Research Framework 
The decision framework used in this paper is based 
on game theoretical approach proposed by Işıklar 
Alptekin and Bener [13]. They built their model on 
a competitive spectrum exchange marketplace. They 
obtained the equilibrium spectrum prices through 
Nash equilibrium point, which tells the spectrum 
holders the ideal price and quality of service level 
values where profit is maximized at the highest level 
of customer satisfaction. They showed via 
numerical results that the price and QoS level values 
of the network providers depend on the price and 
QoS of their own bands as well as the prices and 
QoS levels of their competitors’ bands. 

Based on their research, the pricing problem for 
intelligent transportation system is formed as 
follows: 

Players: A set of N Service providers in smart 
transportation network. They compete with each 
other to serve customers. 

Strategies: The choice of price of the offered 
data service subject to QoS parameters and capacity 
constraints. 

Commodity of the market: Data services. 
The objective of the model is to calculate the 

prices of the data services that should result in 
highest possible utilities for service providers as 
well as highest possible service quality for 
consumers.  

The proposed market architecture is given in Fig. 
1. Service providers are at the top of the hierarchy. 
The regulatory body of the marketplace coordinates 
the interaction between customers and service 
providers and is monitoring data delivery service 
and possibly handling payment transactions as an 
intermediary. If the service providers chose to 
cooperate in their service offerings, the regulatory 
body would provide bundling of data services as a 
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package. However, the main assumption of the 
proposed model is that the service providers do not 
cooperate and behave independently. 

 

 
 

Fig. 1. The system model for data services 
marketplace. 

 
As proposed by Işıklar Alptekin and Bener [13] 

the service providers offering has two parameters: 
Price and quality of service (QoS) level. p = {p1k,…, 
pNk} is the vector of prices where pik is the price that 
ith Service Provider charges kth Customer, and q = 
{q1k,….,qNk} where qik is the quality level offered by 
ith Service Provider to kth Customer with k∈[1,M] 
and i∈[1,N].  

Similarly, the price is determined based on two 
components: A base price (𝑝𝑝𝑖𝑖) based on the demand 
to ith Service Provider and a quality-related price 
(𝑝𝑝𝑖𝑖𝑖𝑖 ) based on the quality level of ith Service 
Provider’s services. Naturally, if the demand for ith 
Service Provider’s services increase so does its base 
price. The same is also valid for quality levels. The 
base price is calculated using the following 
equation: [13] 

 
{ }1,..,

i i i ik
k M

p c k D
∈

= +
 
 
 
∑  (1) 

where ci symbolizes the fixed costs of the ith 
Service Provider, Dik represents the demand of kth 
Customer to ith Service Provider, and ki is a positive 
constant measuring the effect of base price on the 
demand.  

The effect of QoS level on the service price is 
calculated as follows: [13] 

 
1

. .
n

ik ik ik jk jk
j
j i

p w q w q
=
≠

= −∑     (2) 

where wik is a positive constant representing the 
effect of QoS level on ith Service Provider’s prices, 

qik is the QoS level offered to kth Customer, and wjk is 
a positive constant representing the effect of 
competitor’s QoS level on ith Service Provider’s 
prices. Hence, the price offered to kth Customer by 
ith Service Provider is calculated by combining 
equation (1) and (2): [13] 

ik i ikp p p= +   (3) 
The kth Customer’s demand from ith Service 

Provider is obtained as: [13] 

( )
1

p . .
n

ik k k ik jk jk
j
i j

D a b p t p
=
≠

= − +∑          (4) 

where bk represents price changes’ influence on 
ith Service Provider’s demand, tjk represents 
competitors’ price changes’ effect on ith Service 
Provider’s demand. ak is kth Customer’s base 
demand from ith Service Provider. Here, customer’s 
demand is assumed to be linearly affected by the 
price of the services. The price equation is obtained 
by combining equations (1), (2) and (4): [13] 

 

1

1

max

min max

. .

. .

0 ;

0

n

ik i i k k ik jk jk
k j

i j
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ik ik jk jk
j
j i

i ik ik

ik ik ik

p c k a b p t p

w q w q

c p p
q q q

=
≠

=
≠

= + − + +

+ −

  
  
     

≤ ≤ ≤

≤ ≤ ≤

∑ ∑

∑  (5) 

where maximum price level and minimum 
quality levels are defined by the service provider 
itself or by the regulatory body. The lower bound 
for the price keeps service providers’ net profit 
positive. 

The QoS related parameters in the model (qik) are 
defined in the range of [0, 1]. The level of these 
parameters depends on many factors, such as 
interval of the spectrum of the band, throughput, 
signal-to-interference-plus-noise ratio (SINR), bit 
error rate (BER) degradation in the network, 
network access time, vulnerability to denial-of-
service attack, response time, etc. [14]. Each 
customer or more commonly applications used by 
the customers will have to determine which QoS 
parameters to consider and what their importance 
weights should be. 

Işıklar Alptekin and Bener [13] in their cognitive 
radio network model proposed that service providers 
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should consider their opportunity costs when setting 
the prices. They used the definition of Cave [15], 
who defined the opportunity cost as the value of an 
asset or resource in the next best alternative that is 
foregone by virtue of its actual use. In intelligent 
transportation system framework a similar cost may 
occur if a service provider has excess demand for its 
resources and hence use pricing to regulate its 
demand. In literature, there are different 
propositions to calculate opportunity cost especially 
in the context of spectrum management. In this 
paper, Doyle’s research [16] will be used to 
determine the opportunity cost of ith Service 
Provider received from kth Customer: [13] 

( ) [ ]1 2. . . .ik ik ik k ik k ik ikOC D t BF t LF D p= +      (6) 
where BFk is defined as the technology factor, 

and LFk as the location factor in the range of [0-1]. 
The technology factor represents the number of 
technologies used by the service providers to reach 
its customer, such as cellular networks, Bluetooth, 
machine-to-machine communication, etc.. If this 
factor is higher, it simply means service provider 
has increased opportunity to reach customers. The 
location factor determines the congestion level of 
the region that service providers operate. The 
weights, t1ik and t2ik, are used to modify the cost 
value according to the marketing preferences of 
service providers, where t1ik and t2ik are positive and 
their sum is set to equal to one. 

The utility functions of the service providers 
depend on their price and QoS level strategies. The 
utility function of the ith Service Provider is 
represented by Uik (pik, qik ) and given by the sum of 
the differences of its opportunity cost (OCik) from its 
revenues from all its customers:  

[ ]
{ }1,..

(p, q) . ( )i ik ik ik ik
k M

U p D OC D
∈

= −∑  (7) 

For every service provider in the marketplace, 
the utility function Ui’s value depends on the 
strategy selected by ith service provider given as (pi, 
qi), and the current strategies of its competitors 
given as (p-i, q-i). In this paper, it is assumed that Ui 

(p,q) is continuous in p and concave in pik for all i∈
[1,N] and k∈[1,M].  

Ui(p,q) represents the net revenue of ith service 
provider with the vector of prices p and the vector of 
QoS parameters q, where QoS levels is fixed at 
values qik, q1k, q2k, …, qNk during the game. The 
resulting single-parameter Nash equilibrium in p at 
q is the vector p* that solves for all i: [13] 

( )
( )* *

1 1
,q

( *, ) , ..., , ..., , , ..., , ...,p q maxi i k ik Nk k ik Nk
pik i

U U p p p q q q
∈ℜ

=  (8) 

According to the research of Başar and Olsder 
[17], if the equilibrium strategy profile is 
deterministic, a pure strategy Nash equilibrium 
exists. For finite games, even if a pure strategy Nash 
equilibrium does not exist, a mixed strategy Nash 
equilibrium can be found. Nash equilibrium point 
corresponds to the steady-state of the game and is 
predicted as the most probable outcome of the game 
[18]. 

The proposed model is of the form of a potential 
game. It can be shown that there exists a function 
known as the potential function 𝑉𝑉: 𝑆𝑆 → ℜ, that 
reflects the change in utility value accrued by 
unilaterally deviating player [19]. Any potential 
game in which players take actions sequentially 
converges to a pure strategy Nash Equilibrium that 
maximizes the potential function regardless of the 
order of play and the initial condition of the game 
[19]. The utility function of the proposed game 
model is given as: [13] 
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The following partial derivatives are calculated 
using the above given utility function: [13] 

2

1,

N
i

jk
j i jik jk

U t
p p = ≠

∂
=

∂ ∂ ∑   and  
2

1,

N
j

ik
i i jik jk

U
t

p p = ≠

∂
=

∂ ∂ ∑  (10) 

 
where tjk represent effect of price variations of ith 

service provider’s competitors on ith service 
provider’s demand. Since a customer is equally 
influenced from service providers’ price variations: 
[13]  

1, 1,

N N

jk ik
j i j i i j

t t
= ≠ = ≠

=∑ ∑   (11) 

 
Hence, 

22
ji

ik jk ik jk

UU
p p p p

∂∂
=
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{ }1,..,i N∈ ; { }1,..,k M∈   

(12) 
 
The exact potential function for the proposed 

game is given as: [13] 
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1 1
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(13) 
 
5 Case Study 
A demonstrative example where two intelligent 
transportation system service providers are 
competing in the same market is constructed to 
evaluate the applicability of the proposed 
framework.  
In the constructed game, the players are trying to 
maximize their potential function, but it is assumed 
that they take turns one at a time in a round-robin 
fashion to change the price of their offerings. In 
each step, the algorithm calculates the price value 
for a service provider that maximizes its potential 
function. For the calculation the most recent price 
decisions of other players in the previous step is 

used. The related algorithm is summarized as 
follows: [13] 

 
 

define t = time step; t = 0; 
{ set initial price value for each service provider; 
t = t +1; 
while p*(t) - p*(t-1) > ε 
{ t = t +1; 
for i=1 to N 
{ pick ith service provider; 
given the price values of competitors, find 
pik*= argmax (V) of ith service provider ;}} 
end;} 
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The parameters used in the calculations are given 
in Table 1. SP denotes the service providers, C 
denotes the customers. Table 1 models a typical 
customer’s sensitivity to the quality and prices of 
the services offered by the service providers given 
the quality and price of the competitors.  

 
Table 1. Case Study Parameters 

 SP1 SP2    
 C1 C2 C1 C2  SP1 SP2 

wik 0.60 0.30 0.20 0.10 ci 2 2 
wjk 0.05 0.05 0.10 0.10 qi 0.75 0.6 
tjk 0.03 0.08 0.10 0.15 ki 0.20 0.15 
t1ik 0.50 0.50 0.50 0.50    
t2ik 0.50 0.50 0.50 0.50    
bk 0.10 0.30 0.10 0.30    
ak 20 20 20 20    
TFk 1 1 1 1    
LFk 0.75 0.75 0.75 0.75    

 
In the case study two customer profiles are 

created: a high profile customer (C1) and a low 
profile customer (C2). The base demand (a) is 
assumed the same for both customer profiles and is 
set at 20 for each. The base demand represents 
average demand of different customer profiles. 

Similar to customer profiles, service providers 
are also differentiated in their preferences. The first 
service provider (SP1) attaches more importance to 
its QoS level, compared to second service provider 
(SP2). It also pays much attention to the QoS levels 
of its opponent when calculating service prices. The 
corresponding values for customers are set 
according to their quality sensitivities. The service 
providers are assumed to have same fixed costs (ci). 
t1ik and t2ik parameters are all set equal to 0.5 for the 
sake of simplicity [13]. They should reflect the 
marketing preferences of service providers. The 
results of the algorithm at the equilibrium point is 
summarized in Table 2.  

 
Table 2. Results At The Equilibrium  

 SP1 SP2 
 C1 C2 C1 C2 

p* 9.991 9.766 7.781 7.721 
Demand 19.779 18.228 19.522 18.465 
Utility 375.643 294.450 

 
Analyzing to the results, it can observed that SP1 

will maximize its utility when it sets its prices 9.978 
and 9.753 to the first and second customer 
accordingly. The resulting demand is calculated as 

19.783 and 18.234. Both service providers are able 
to sell more services to the high profile customer 
with higher prices. As the second customer is more 
price concise, it demands more from the second 
service provider. The opposite is also observable, as 
the high profile customer prefers the high priced 
service provider. When the strategies of service 
providers are compared, the effect of QoS level on 
the service price is enabling the first service 
provider to set its prices higher than its competition. 
Hence, the second service provider in order to 
maximize its utility has to set a lower price level 
than its competitor. 

 
6 Conclusion 
Intelligent transportation systems typically require 
high amount of investment. Therefore, mechanisms 
that will contribute to the utilities of service 
providers are of great importance for market 
acceptance and effective deployment. Classic usage-
based pricing mechanisms are usually too static to 
handle fluctuating demand and resource constraints 
expected in sensor based infrastructures. Pricing 
models related to time, related to demand or related 
to sensitivity/loyalty have more potential to respond 
to more demanding and price and quality sensitive 
customers. 

Though, finding the right price for different 
customers requires that their buying habits, their 
sensitivities are identified. This process requires 
extensive data mining, which should produce the 
data needed to create efficient algorithms for pricing 
and setting the correct levels of quality. 

In the proposed game theoretical model, the 
service providers in the marketplace are defined as 
players that try to optimize a joint objective 
function, the potential function. The model 
calculates the price depending on the QoS level of a 
service provider and its competitors. The demand 
function chosen in the model also takes into account 
the prices offered by other service providers in the 
market. The outcome of the game is the optimum 
prices of the services given corresponding QoS 
levels. The simulation results reveal that the prices 
offered to customers depend on the QoS level of the 
service as well as on the prices and QoS levels 
offered by the customers.  

Future work could create more realistic scenarios 
where prices of services are accepted with different 
probability levels depending on customer profiles. 
This addition could prove more effective in a more 
dynamic setting as expected in IoT environments.  
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