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Abstract: In this study, we propose a class of total variation diminishing (TVD) schemes for solving pseudo-
monotone variational inequality arises in elasto-hydrodynamic lubrication point contact problem. A limiter based
stable hybrid line splittings are introduced on hierarchical multi-level grid. These hybrid splittings are designed
by use of diffusive coefficient and mesh dependent switching parameter in the computing domain of interest. The
spectrum of illustrated splittings is derived with the help of well known local Fourier analysis (LFA). Numerical
tests validate the performance of scheme and its competitiveness to the previous existing schemes. Advantages
of proposed splittings are observed in the sense that it reduces computational complexity (up to (O(n logn)) and
solve high order discretization directly (no defect-correction tool require) without perturbing the robustness of the
solution procedure (i.e. it works well for large range of load parameters).

Key–Words: TVD schemes, Multi-level, Variational inequality, Elastohydrodynamic Lubrication, Defect-
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1 Introduction

In tribology, elasto-hydrodynamic lubrication (EHL)
is understood as a phenomenon of fluid film lubri-
cation in which the process of hydrodynamic fluid
film creation is governed due to deformation of
contacting bodies due to high pressure. EHL is
used to minimize friction and wear in tribologi-
cal contacts e.g. rolling bearings, cam-tappet sys-
tems, gears, flexi- ble seals, and human synovial
joints. Significant contributions have been noted by
many researchers in the development of more effi-
cient and accurate methods for the study of EHL
in last few decades (e.g.[1],[2],[3],[4],[5],[6],[7],[8]
,[9],[10],[11],[12],[13]). It is well known that many
numerical solutions of EHL model suffer lack of nu-
merical stability and convergence during computa-
tion, if not tackled correctly. On the other hand, when
we discretize Reynolds equation, film thickness equa-
tion (in integral form) and load balance equation to-
gether using any standard approach like finite differ-
ence or finite element method direct solver such as
Newton-Raphson technique takes a lot of computa-
tional storage and time (up to O(n3)) to solve the
dense matrix system. For dealing such numerical dif-
ficulty, people started approximating the dense matrix

system in the form of sparse matrix system (or banded
matrix system) to reduce the complexity of discrete
problem.
In 1992, Venner [5] has introduced a low order dis-
cretization for EHL model (see 1.1) using multi-
grid and multi-level multi-integration approach which
is stable for larger range of load parameters. Re-
cently, there are few other independent work also
have been noticed by the authors e.g. differential de-
flection method by Cardiff group [11], Discontinuous
Galerkin method by Leeds group [12] and FEM-based
Newton method by INSA de Lyon group [13] (How-
ever, in this case, the deformation is modeled in PDE
form ) etc. In all mentioned approach researchers have
tried to approximate discretized dense matrix in the
form of banded matrix system (or sparse matrix sys-
tem). Recently, a review work is presented by Lugt et
al. [14] provide a rigorous detail on the current EHL
development activities in the field.
The main numerical difficulty in EHL model prob-
lem 1.1 occurs due to lack of stable smoother and
poor approximation of pressure profile near its steep
gradient location by any standard iterative procedure.
Also, when applied load in contacting bodies are suf-
ficiently high then many people observed wiggles in

Peeyush Singh
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 37 Volume 5, 2020



pressure and film thickness profile by using central or
any high order scheme in convection term of Reynolds
equation. One possible way to overcome the diffi-
culty, people have used lower order discretization in
convection term. In addition, for obtaining the high
order stable, accurate solutions for such problems, re-
searchers have applied lower order scheme in a de-
fect corrected way [10] through a suitable higher or-
der discretization. However, such defect-correction
[15],[16] setting most the time is not able to solve the
difficulty in the sense that it does not reduce residual
accurately due to poor conditioning of matrix in outer
iteration (e.g.[17]). Furthermore, lower order schemes
are more diffusive and allow to produce smoothing ef-
fect in the steep gradient region of solution and less
accurate in the smooth part of the solution.
This is the main motivation for present study to
adopt total variation diminishing (TVD) approach for
the EHL model problem. The reason behind TVD
schemes for EHL model have been rarely applied so
far in literature due to the fact that implementation is
not obvious and straight forward as the case of linear-
convection diffusion due to strong coupling of pres-
sure and film thickness term in existing model. There-
fore, in this article an attempt has been made to solve
the problem generalizing TVD concept efficiently in
the existing EHL model.
TVD schemes are understood as a generalized form
of upwind based discretized schemes (more detailed
definition will define later). Mostly, such schemes
have been extensively devised for solving time depen-
dent gas dynamics problems. Later on people have
started to apply such concept for steady state prob-
lem in many CFD applications. Initially, the concept
of TVD has been established by Harten and later by
Sweby [18],[19],[20] to avoid unphysical wiggles in
a numerical scheme. Harten also has given necessary
and sufficient condition for a scheme to be TVD. To
understand the concept, we first define the notation to-
tal variation TV of a mesh function un as

TV (un) =
∞

∑
−∞

|un
j+1−un

j |=
∞

∑
−∞

|∆ j+1/2un| (1)

having the following convention

∆ j+1/2un = un
j+1−un

j (2)

for any mesh function u is used. Harten’s theory is
understood in the form of conservation laws

ut + f (u)x = 0. (3)

The numerical approximation of Eq. (3) is said to be
TVD if

TV (un+1)≤ TV (un) (4)

Then Harten’s condition for any scheme to be TVD is
explained below.

Theorem 1 Let a general numerical scheme for con-
servation laws Eq. (3) is of the form

un+1
i = un

i − cn
i (u

n
i −un

i−1)+dn
i (u

n
i+1−un

i ) (5)

over one time step, where the coefficients cn
i and dn

i
are arbitrary value (In practice it may depend on val-
ues un

i in some way i.e., the method may be nonlinear).
Then TV (un+1)≤ TV (un) provided the following con-
ditions are satisfied

cn
i ≥ 0 ,dn

i ≥ 0 ,cn
i +dn

i ≤ 1 ∀i (6)

There has been a very well developed TVD theory
available in literature for time dependent problem.
Additionally, this concept is also extended for steady
state convection-diffusion case in the form of M-
matrix [21] using appropriate flux limiting schemes
[15],[16],[17],[22]. However, very little attention
have been paid in developing TVD schemes for EHL
problems. In this article, our aim to investigate a class
of splitting for EHL model which is robust and high
order accurate ( at least second order in smooth part
of the solution ) for larger range of load parameters.

1.1 Model Problem

The following two dimensional circular point contact
model problem is taken for numerical study defined
below in the form of variational inequality written in
non dimensional form

∂

∂x

(
ε

∂u
∂x

)
+

∂

∂y

(
ε

∂u
∂y

)
≤ ∂ (ρH )

∂x
∈ Ω

u≥ 0 ∈ Ω

u.
[

∂

∂x

(
ε

∂u
∂x

)
+

∂

∂y

(
ε

∂u
∂y

)
− ∂ (ρH )

∂x

]
= 0 ∈ Ω,

(7)

where u is non-dimensional pressure of liquid (lubri-
cant) and Ω is sufficiently large bounded domain such
that

u = 0 on ∂Ω. (8)

Here term ε is defined as

ε =
ρH 3

ηλ
,

where ρ is dimensionless density of lubrication, η is
dimensionless viscosity of lubrication and speed pa-
rameter

λ =
6η0usR2

a3 pH
. (9)
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Figure 1: Schematic diagram of EHL point contact
model

The non-dimensionless viscosity η is defined accord-
ing to

η(u) = exp

{(
α p0

z

)(
−1+

(
1+

upH

p0

)z
)}

.

(10)

Dimensionless density ρ is given by

ρ(u) =
0.59×109 +1.34upH

0.59×109 +upH
. (11)

The term film thickness H of lubricant is written as
follows

H (x,y)=H00+
x2
2 + y2

2 + 2
π2
∫

∞

−∞

∫
∞

−∞

u(x
′
,y
′
)dx
′
dy
′

√
(x−x′ )2+(y−y′ )2

, (12)

where H00 is an integration constant.
The dimensionless force balance equation is defined
as follows ∫

∞

−∞

∫
∞

−∞

u(x′,y′)dx′dy′ =
3π

2
(13)

All notations used in EHL model are defined in A.
A schematic diagram of EHL point contact model

is given in Fig. 1. Rest of the article is organized
as followed. In Section. 2, few preliminaries are
discussed which require in numerical study of EHL
model which help in subsequent numerical analysis
of the model. In Section 3, a series of splitting are
constructed by imitating linear convection-diffusion
model and linear EHL model. In Section 4, a hybrid
splitting are constructed for solving our existing EHL
model defined in 1.1. In Section 5, local Fourier anal-
ysis is performed to calculate quantitative estimate of
splitting calculated in Section 3. In Section 6, nu-
merical experiments are conducted to check the per-
formance of present splitting and its improvement to
EHL model. At the end of Section 7, overall conclu-
sion is summarized.

2 Preliminaries

In this section, our main goal is to introduce few pre-
requisite theory which already used in our computa-
tion and cannot be ignored or avoided in the present
analysis. Above nonlinear variational inequalities is
solved numerically by using fixed point iteration the-
ory [4],[7],[23]. The main challenge appears here in
the form of producing a stable iterative smoother for
EHL inequalities when the applied load on contacting
bodies in EHL model become sufficiently large and
after few iterations solution start blowing up. In such
cases, iterative smoother for solving such model is
stable only if nonlocal effect produced by film thick-
ness equation is controlled by small change calcula-
tion in the iteration to make the overall effect local
in updated pressure value. This effect is reduced by
introducing special iterative smoother known as dis-
tributive smoother [5],[24],[25],[26]. The advantage
of adopting such relaxation diminishes aggregation
in film thickness computation and eventually leads to
stable relaxation. Therefore, we need an extra care for
computing film thickness term during each iteration.
Let us define deformation integral D f as

D f (x,y) =
2

π2

∞∫
−∞

∞∫
−∞

u(x
′
,y
′
)√

(x− x′)2 +(y− y′)2
dx
′
dy
′
.

(14)

We approximate the above integral Eqn. 14 taking
pressure u as piecewise constant function namely uhh

i′, j′

on sub-domain

Ωhh=

{
(x,y)∈R2

∣∣∣xi′−
h
2≤x≤x

i′+
h
2 ,y j′−

h
2≤y≤y

j′+
h
2

}
. (15)

and discrete deformation

D f i, j = D f (xi,y j)≈
2

π2

nx

∑
i′=0

ny

∑
j′=0

G hh
i,i′ , j, j′u

hh
i′, j′ , (16)

where the coefficients G hh
i,i′ , j, j′

is written as

G hh
i,i′ , j, j′ =

x
i′+

h
2∫

x
i′−

h
2

y
j′+

h
2∫

y
j′−

h
2

1√
(x− x′)2 +(y− y′)2

dx
′
dy
′

(17)

and evaluated analytically. Above integration Eqn. 17
yields nine different results for the cases that are de-
fined as

xi < xi′ ,xi > xi′ ,xi = xi′ and y j < y j′ ,y j > y j′ ,y j = y j′
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respectively. The nine results are combined into one
expression

G hh
i,i′ , j, j′

=
2

π2

{
|x+|sinh−1(

y+
x+

)+ |y+|sinh−1(
x+
y+

)−|x−|sinh−1(
y+
x−

)

−|y+|sinh−1(
x−
y+

)−|x+|sinh−1(
y−
x+

)−|y−|sinh−1(
x+
y−

)

+|x−|sinh−1(
y−
x−

)+ |y−|sinh−1(
x−
y−

)
}
,

(18)

where

x+ = xi− xi′ +
h
2
, x− = xi− xi′ −

h
2

y+ = y j− y j′ +
h
2
, y− = y j− y j′ −

h
2
.

Therefore film thickness in discretized form is written
as

H hh
i, j :=H00+

x2
i

2
+

y2
j

2
+∑

i′
∑
j′

G hh
|i−i′|,| j− j′|u

hh
i′ , j′ = HF h

i, j,(19)

where HF h is right hand of the film thickness. For
computing above discrete film thickness Eqn. 19,
small change using relaxation is measured as

σ
h
i, j =

rh
i, j

G hh
0,0

, (20)

where G hh
0,0 = G hh

i=i′, j= j′ and the residual rh
J i, j for Jacobi

relaxation is given by

rh
J i, j = HF h

i, j−H00−
x2

i

2
−

y2
j

2
−∑

i′
∑
j′

G hh
|i−i′|,| j− j′|ũ

h
i, j

(21)

For Gauss-Seidel relaxation, residual rGS
h
i, j is given by

rGS
h
i, j = HF h

i, j−H00−
x2

i

2
−

y2
j

2
−∑

i′<i
∑
j′

G hh
|i−i′|,| j− j′|ū

h
i, j−∑

i′=i
∑
j′< j

G hh
|i−i′|,| j− j′|ũ

h
i, j

−∑
i′=i

∑
j′>= j

G hh
|i−i′|,| j− j′|ũ

h
i, j−∑

i′>i
∑
j′

G hh
|i−i′|,| j− j′|ũ

h
i, j,

(22)

where ũi, j and ūi, j old and new updated values of pres-
sure respectively.

2.0.1 Smooth kernel computation using MLMI

Suppose we want to solve integral of type Eqn. 19.
If kernel G (x,y) is sufficiently smooth with respect to

the variable y, we approximate discrete kernel G hh
i, j by

high order interpolation operator as

G̃ hh
i, j ' [I h

HG hH
i,. ] j, (23)

where the high order interpolation operator is denoted
by I h

H and G hH
i,. is injected from G hh

i,. i.e., G hH
i,J

def
= G hh

i,2J .
Superscript h and H denote the finer and the coarser
grid respectively. Then the finer grid integral compu-
tation of Eqn. 19 is approximated on coarser grid in
following way

W h
i ' W̃ h

i
def
= hd

∑
j

G̃ hh
i, j u∗hj = hd

∑
j
[I h

HG hH
i,. ] ju∗

h
j

= hd
∑
J

G hH
i,J [(I h

H)
T u∗h. ]J = Hd

∑
J

G hH
i,J u∗HJ ,

(24)

where

u∗HJ
def
= 2−d [(I h

H)
T u∗h. ]J. (25)

Whenever kernel G (x,y) is also smooth enough with
respect to x variable, the discrete sum W h

i is evalu-
ated on coarse grid points i = 2I by use of high order
interpolation operator Î h

H . It is written as

W h ' Î h
HW H , (26)

where

W H
I

def
= W̃ h

2I = Hd
∑
J

G HH
I,J u∗HJ (27)

and where G HH
.,J is injected from G hH

.,J , i.e., G HH
I,J

def
=

G hH
2I,J = G hh

2I,2J .

2.0.2 Singular-Smooth or mild singular Kernel
computation using MLMI

In general, kernel G has a mild singularity near a point
x = y. We rewrite our coarse grid approximation by
adding correction term near singularity in the follow-
ing way (see [24])

W h
i = hd

∑
j

G hh
i, j u∗hj = hd

∑
j

G̃ hh
i, j u∗h

j +hd
∑

j
(G hh

i, j − G̃ hh
i, j )u

∗h
j

= hd
∑

j
[I h

HG hH
i,. ] ju∗

h
j +hd

∑
j
(G hh

i, j − G̃ hh
i, j )u

∗h
j

= W H
I +hd

∑
j
(G hh

i, j − G̃ hh
i, j )u

∗h
j

(28)
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kernel and soln
coarse grid

calculation

integral sum calculation

Refine and Correct

Figure 2: Schematic diagram of multi level multi in-
tegration

Since G̃ hh
i, j is an interpolation of G hh

i, j itself using coarse
grid points, the operator (G hh

i, j − G̃ hh
i, j ) is given by

(G hh
i, j − G̃ hh

i, j ) =

{
0 j = 2J
O(h2pG 2p(ξ ) otherwise ,

(29)

where 2p is the interpolation order and G 2p(ξ ) is
a 2pth derivative of G at some intermediate point
ξ . Thus if the derivative of G becomes small, the
correction term become small and can be neglected.
However, in case of singular smooth kernel (i ' j),
we require the corrections in a neighborhood of i =
j(|| j− i|| ≤m or i−m≤ j≤ i+m). Thus Eq. (28)
is simplified as follows

W h
i = W H

I +hd
∑

|| j−i||≤m
(G hh

i, j − G̃ hh
i, j )u

∗h
j (30)

Advantage of using multi-level procedure in film
thickness H computation reduces integral complex-
ity up to O(n logn). A schematic diagram of multi
level multi integration procedure is given in Fig. 2.

2.1 Multi-Grid Method for variational in-
equality arising in EHL Problem

In this section, we discuss multi-grid method [27, 28]
for variational inequality of EHL model. EHL prob-
lem is viewed as a linear complementarity problem
[23, 22] of the form

Lu≤ f1 x ∈Ω

u≥ f2 x ∈Ω

u = g x ∈ ∂Ω

(u− f2)(Lu− f1) = 0 x ∈Ω, (31)

where L is a linear differential operator. We want
to solve the problem in discrete hierarchical sub-

domains of the following form{
Ωl; Ωl−1 ⊂Ωl ⊂Ω ∀l ∈ Z∩ [1,M], where M ∈ R

}
(32)

Hence discrete form of complementarity problem on
level l is written as

Llul ≤ f1,l xl ∈Ωl

ul ≥ f2,l xl ∈Ωl

ul = g xl ∈ ∂Ωl

(ul− f2,l)(Llul− f1,l) = 0 xl ∈Ωl. (33)

Let ul and vl are an exact solution and approximated
solution of above LCP Eqn. 33. Suppose that the er-
ror el = ul − vl is smooth after the iteration sweep-
ing. Then complementarity problem satisfied for error
equation el on finer level is read as

Llel ≤ rl x ∈Ω

el + vl ≥ f2,l x ∈Ω

(el + vl− f2,l)(Llel− rl) = 0 x ∈Ω, (34)

where residual rl = f1,l −Llvl . Such smooth error el
is approximated on a coarse grid without loosing any
essential information. The LCP coarse grid equation
for the coarse grid approximation of the error el−1 is
therefore defined in PFAS by

Ll−1el−1 ≤ Il−1
l rl

el−1 + Ĩl−1
l vh ≥ f2,l−1

(el−1 + Ĩl−1
l vh− f2,l−1)(Ll−1el−1− Il−1

l rl) = 0.
(35)

Since the problem is nonlinear and we are solving
inequalities, we solve for full approximation vl−1 =
el−1 + Il−1

l vl but interpolate only vl−1 back to fine
grid. The main difference between multi-grid meth-
ods for equations and inequalities occur due to fact
that, in case of fine grid converged solution vl = v∗l the
coarse grid correction equation should be zero. Con-
sequently, we have the following relation

Il
l−1el−1 = Il

l−1(v
∗

l−1− Ĩl−1
l v∗l) = 0⇒ vl−1 = Ĩl−1

l vl
(36)

(assume that operator Il
l−1 keeps nonzero quantities

nonzero).
Furthermore, for a converged solution of fine grid
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LCP problem the coarse grid correction provides us
the following condition on restriction operators,

Il−1
l ( f1,l−Llvl)≥ 0

Ĩl−1
l vh ≥ f2,l−1

(Ĩl−1
l vl− f2,l−1)

T Il−1
l ( f1,l−Llvl) = 0 (37)

Since f1,l−Llvl ≡ 0 for any converge solution. Hence
above inequalities 37 will satisfy for any rational
choice of restriction operators Il−1

l and Ĩl−1
l . For cap-

turing free boundary and for achieving fast conver-
gence the bilinear interpolation operator Il

l−1 is imple-
mented only for unknowns on the inactive points that
means,

vl ⇐ vl + Il
l−1el−1 if vl > f2,l

vl ⇐ vl elsewhere (vl = f2,l). (38)

3 Linear study for convection-
diffusion problem

Our specific interest in this Section is to develop
an robust splitting for our EHL model. Such split-
ting is constructed by imitating series of linear model
problem one by one. First we consider well known
convection-diffusion problem of the form

Example 3.1

Lu = (a(x,y)u)x− ε∆u = f (x,y) ∀x,y ∈Ω

u(x,y) = g(x,y) ∀x,y ∈ ∂Ω, (39)

where 0 < ε << 1 (note that we do not have any y
derivative in convection term). Then discretization of
convective term for (au)x is performed as

(au)x =
a
h
(ui, j−ui−1, j) =: L1 (40)

However, this scheme is only O(h) accurate. Our in-
terest here to increase accuracy at least smooth part
without contaminating any wiggle in solution. Con-
sider the Van Leer’s κ-schemes [29] for discretization
term (au)x (for a = const > 0) as

(au)x=
a
h [(ui, j−ui−1, j)− κ

2 (ui, j−ui−1, j)+
1−κ

4 (ui, j−ui−1, j)

+ 1+κ

4 (ui+1, j−ui, j)− 1−κ

4 (ui, j−ui−2, j)]

=L1+Lα+Lβ+Lγ+Lδ (41)

(similar scheme can be constructed for a < 0). The
resulting discrete model Example. 3.1 by κ-scheme

(take κ = 0 here) is denoted by

[Lκ=0] =
a
h

[
1/4 −5/4 3/4 1/4 0

]
+

ε

h2

 0 −1 0
−1 4 −1
0 −1 0

 (42)

In general, above discrete equation. 39 do not pro-
duces M-matrix and many iterative splitting on Lκ di-
verge. Therefore, this problem is solved using TVD
scheme with help of appropriate flux limiters to pre-
vent a solution from unwanted oscillation. Now con-
sider κ = −1 then the second-order upwind scheme
looks like (a > 0)

(au)x =
a
h
[(ui, j−ui−1, j)+

1
2
(ui, j−ui−1, j)

+
1
2
(ui, j−ui−1, j)−

1
2
(ui−1, j−ui−2, j)]

= L1 +Lα +Lγ +Lδ . (43)

We enforce Eqn. 43 to satisfy TVD condition by mul-
tiply limiter functions in the additional terms Lα ,Lγ

and Lδ . Then following two type of discretization for
convection term are presented here as

(au)x =
a
h
[(ui, j−ui−1, j)+

1
2

φ(ri−1/2)(ui, j−ui−1, j)

−1
2

φ(ri−3/2)(ui−1, j−ui−2, j)] = L1 +Lα +Lγ (44)

and

(au)x =
a
h
[(ui, j−ui−1, j)+

1
2

φ(ri−1/2)(ui, j−ui−1, j)

+
1
2

φ(ri−3/2)(ui, j−ui−1, j)−
1
2

φ(ri−3/2)(ui−1, j−ui−2, j)]

= L1 +Lα +Lβ ++Lγ , (45)

where ri−1/2 =
(ui+1, j−ui, j)

(ui, j−ui−1, j)
and ri−3/2 =

(ui, j−ui−1, j)

(ui−1, j−ui−2, j)
.

In Fig. 3 represents graph of limiter function (r,φ(r))
on which the resulting convection discretization
term defined in Eqn. 43 and Eqn. 44 enforce to
be TVD and higher order accurate (see [17]). The
discrete representation of Example 3.1 using Van-leer
κ-scheme is defined as

Lκu = ∑
lx∈I

∑
ly∈I

C
(κ)
lxly ui+lx, j+ly . (46)

Peeyush Singh
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 42 Volume 5, 2020



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

φ

r

Limiters used in the study

Van Albada
Van leer

INSA
Superbee

Smart
k=1/3

Figure 3: Schematic diagram of class of limiter func-
tion φ with respect to r used in our study (see [17])

Moreover, in stencil notation it is represented as

Lκ =


C κ

02
C κ

01
C κ
−20 C κ

−10 C κ
00 C κ

10 C κ
20

C κ
0−1

C κ
0−2

 . (47)

Then the discrete matrix equation Lκu = f is solved
efficiently by the use of multi-grid. The related split-
ting is constructed by taking the matrix operator de-
fined in Eqn. 47. In particular case, the splitting in
x-direction is scanned as forward (or backward direc-
tion depending on flow direction) lexicographical or-
der and it is represented as Sκ = Sx f

κ (or Sxb
κ ). For ma-

trix operator Lκ , the forward splitting Sx f
κ is defined

as

Lκ = Lx
κ/2− (Lx

κ/2−Lκ) =: L+
κ +L0

κ +L−κ ,

where

Lx
κ/2:=L+

κ +L0
κ=



0
0

0 0 0 0 0
C κ

0−1
C κ

0−2


+



0
0

0 C
κ/2
−10 C

κ/2
00 C

κ/2
10 0

0
0


and therefore overall splitting is

Lx
κ/2un+1 = (Lx

κ/2−Lκ)un + f .

Now for a fixed x-line (m-grid points in x-direction)

(i, j0)(1≤i≤m)

, we have the following

L0
κu∗ = f +L0

κun− (L−κ +L0
κ)u

n−L+
κ un+1.

L0
κ corresponds the operator to the unknowns u∗ which

are scanned simultaneously. L−κ corresponds the oper-
ator to the old approximation un, and L+

κ operator hav-
ing updated values of un+1. Now by applying under-
relaxation constant ω in above equation we have

un+1 = u∗ω +un(1−ω),

therfore splitting equation can be rewritten in corre-
sponding change, σn+1 = un+1−un form as

L0
κσ

n+1 = f − (L−κ +L0
κ)u

n−L+
κ un+1,

un+1 = un +σ
n+1

ω

Now we construct series of splitting for solving
Eqn. 39 as below.
Splitting : Ls0 This splitting is constructed by tak-
ing upwind operator L1 plus a “positive” part of the
second-order operators Lα and Lβ from Eqn. 45 and
part of diffusion operator from Eqn. 47.

L0
κ u=−

{
ε

h2 +
a

4h (5−3κ)

}
ui−1, j+

{
a
h

(
2−κ

2 + 1−κ

4

)
+ 4ε

h2

}
ui, j+

{
− ε

h2

}
ui+1, j

L+
κ u=

{
− ε

h2

}
ui, j−1

L−κ u=

{
a
h

(
1−κ

4

)}
ui−2, j+

{
a
h

(
1−κ

4

)}
ui−1, j+{

− a
h

(
1+κ

4

)}
ui, j+

{
a
h

(
1+κ

4

)}
ui+1, j+

{
− ε

h2

}
ui, j+1. (48)

Splitting : Ls1 This splitting is constructed taking up-
wind operator L1 plus a “positive” part of the second-
order operators Lα from Eqn. 44 and part of diffusion
operator from Eqn. 47.

L0
κ u=

{
− a

h

(
2−κ

2

)
− ε

h2

}
ui−1, j+

{
a
h

(
2−κ

2

)
+ 4ε

h2

}
ui, j+

{
− ε

h2

}
ui+1, j

L+
κ u=

{
− ε

h2

}
ui, j−1

L−κ u=

{
a
h

(
1−κ

4

)}
ui−2, j+

{
a
h

(
1−κ

4

)}
ui−1, j+

{
− a

h

(
1+κ

4

)}
ui, j

+

{
a
h

(
1+κ

4

)}
ui+1, j+

{
− ε

h2

}
ui, j+1 (49)

Splitting : Ls2 In this case splitting coefficients C κ
∗∗

correspond only to the first-order upwind operator L1
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of a discretized Eqn. 44 plus diffusion operator.

L0
κ u=

{
− a

h−
ε

h2

}
ui−1, j+

{
a
h+

4ε

h2

}
ui, j+

{
− ε

h2

}
ui+1, j

L+
κ u=

{
− ε

h2

}
ui, j−1

L−κ u=

{
a
h

(
1−κ

4

)}
ui−2, j+

{
− a

h

(
1−3κ

4

)}
ui−1, j+

{
− a

h

(
1+3κ

4

)}
ui, j

+

{
a
h

(
1+κ

4

)}
ui+1, j+

{
− ε

h2

}
ui, j+1 (50)

Splitting : Ls3 The third splitting named as κ- dis-
tributive line relaxation is constructed by assuming
a ghost variable σ∗ (with the same cardinality as σ )
such that σ = Dσ∗, where matrix D comes due to
distributive change of the relaxation.i.e. We construct
line-wise distributive splitting as

un+1
i, j = un

i, j +σi, j−
(σi+1, j +σi−1, j +σi, j+1 +σi, j−1)

4
(51)

This splitting is understood in the following way:
First, discretize Example 3.1 by κ-scheme and get the
equation of the form as

Lx
κ/2un+1 = f ′, where f ′ = (Lx

κ/2−Lκ)un + f .

Now in the above splitting equation put the value of
un+1 from Eqn. 51 and apply distributive splitting in
the form of right preconditioner defined below.

Lx
κ/2σ

n+1 = Rn and Lx
κ/2Dσ

n+1
∗ = Rn,

where the updated change in pressure and residual
equation are denoted as

σ
n+1 = Dσ

n+1
∗ and Rn = Lx

κ/2un+1− f ′

respectively. In other way, line distributive splitting
consists of following two steps; In first step it cal-
culates new ghost value approximation change σn+1

∗ .
Second step calculates new approximation change
σn+1.
Now applying above splitting along the x-direction in
Example 3.1, the diffusive term is computed as

−ε

[{
ui+1, j+σi+1−

(σi+σi+2)
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

−ε

[{
ui−1, j+σi−1−

(σi−2+σi)
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

−ε

[{
ui, j+1−

σi
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

−ε

[{
ui, j−1−

σi
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2. (52)

and convection term is computed as

+
[ai+1/2, j(2+κ)

2h

{
ui, j +σi−

(σi−1 +σi+1)

4

}
−

ai−1/2, j(2+κ)

2h

{
ui−1, j +σi−1−

(σi−2 +σi)

4

}]
(53)

Other part of convective term which comes from van-
leer discretization do not contain any distributive term
as above explained and kept in right hand side during
relaxation and overall splitting is written as follows(

ε

4h2 +
ai−1/2, j(2+κ)

8h

)
σi−2−

(
7ε

4h2 +
ai+1/2, j(2+κ)

2h +
ai−1/2, j(2+κ)

8h

)
σi−1

+

(
20ε

4h2 +
ai+1/2, j(2+κ)

2h +
ai−1/2, j(2+κ)

8h

)
σi

−
(

8ε

4h2 +
ai+1/2, j(2+κ)

2h

)
σi+1+

ε

4h2 σi+2

=Ri, j+

{
1+κ

4 (ui+1, j−ui, j)− 1−κ

4 (ui−1, j−ui−2, j)

}]
(54)

after solving above equation for σ along x line direc-
tion updated solution un+1 is evaluated as

un+1
i, j = un

i, j +σi, j−
(σi+1, j +σi−1, j +σi, j+1 +σi, j−1)

4
.

However, above splitting Ls3 Eqn. 54 is not robust and
very rarely use in practice.
We are now interested in showing convergence of LCP
through the above presented splitting. Let us con-
sider domain Ω∈R2 with boundary ∂Ω, and consider
known functions f and g. Then find u in a weak sense
such that these inequalities hold

Example 3.2

−(a(x,y)h(u))x + ε∆u≤ f (x,y) ∀x,y ∈Ω

u(x,y)≥ 0 ∀x,y ∈Ω,

u(x,y)[(a(x,y)h(u))x− ε∆u− f (x,y)] = 0 ∀x,y ∈Ω,

u(x,y) = g(x,y) ∀x,y ∈ ∂Ω.

Therefore, discrete version of above problem (finite
difference or finite volume) is written in the matrix
form

Lu≤ f ,

u≥ 0,

u[Lu− f ] = 0, (55)

where L is a M-matrix of order m×m, u and f are
m× 1-column vector. It is well known that solv-
ing above discrete problem is equivalent to solving
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quadratic minimization problem of the form

G(u) =
1
2

uT Lu− f T u,

min
u∈Rm×1

G(u), (56)

subjected to the constraints

u≥ 0.

Theorem 2 Let un and f n are m× 1-column vectors
achieved by splitting algorithm (*),

L0
κσ

n+1 = f − (L−κ +L0
κ)u

n−L+
κ un+1,

σ
n+1 = max{0,σn+1},

un+1 = un +σ
n+1

ω

then we have un→ u and f n→ f such that u and f is
a solution of LCP problem.

Proof 1 For the proof of this theorem we refer to see
Cryer [30].

The following error estimates are easily established
for LCP problem for algorithm described above.

Lemma 3 Let u is the exact solution of LCP problem
define in Eqn. 55, also let un+1 is approximate solution
obtained by the splitting of the form

L0
κσ

n+1 = f − (L−κ +L0
κ)u

n−L+
κ un+1,

σ
n+1 = max{0,σn+1},

un+1 = un +σ
n+1

ω

Then following conditions hold

‖u−un+1‖2 ≤C2‖un+1−un‖2

‖u−un+1‖1 ≤C1‖un+1−un‖1

‖u−un+1‖∞ ≤C∞‖un+1−un‖∞.

Proof 2 Since From LCP problem we get

rκ = L0
κun + f n− (L−κ +L0

κ)u
n−L+

κ un+1 ≥ 0

and
r+κ = (r+κi, j

),

where

r+κi, j
=

{
rκi, j if un > 0 and un+1 > 0,
min(0,rκi, j) if un = 0 and un+1 > 0.

Now consider the following LCP

L0
κun+1 ≤ f − r+κi, j

,

un+1 ≥ 0,

un+1(L0
κun+1− f + r+κi, j

) = 0

Now multiply uT in Eqn. 55 and combing with equality
term we get

(un+1−u)T L0
κu≤ (un+1−u)T f .

similar way we also get

(u−un+1)T L0
κun+1 ≤ (u−un+1)T ( f − r+κi, j

).

Now by adding above two equations we get

(u−un+1)T
ν∗(u−un+1)≤ (u−un+1)T (−L0

κ)(u−un+1)

≤ (u−un+1)T (−r+κi, j
)

This implies that the following conditions hold

‖u−un+1‖1 ≤ ν
−1
1 ‖− r+κi, j

‖1,

‖u−un+1‖∞ ≤ ν
−1
∞ ‖− r+κi, j

‖∞,

‖u−un+1‖2 ≤ ν
−1
2 ‖− r+κi, j

‖2.

Now rest of the proof is followed from Lemma 2.2
mentioned in [23].

Now we illustrate splitting for incompressible EHL
model (we take ρ,η and ε as constants here) in the
form of inequalities as

Example 3.3

(a(x,y)H (u))x− ε∆u≥ f (x,y) ∀x,y ∈Ω

u(x,y)≥ 0 ∀x,y ∈Ω,

u(x,y)[(a(x,y)H (u))x− ε∆u− f (x,y)] = 0 ∀x,y ∈Ω,

u(x,y) = g(x,y) ∀x,y ∈ ∂Ω,

H (u) = H00 +
x2 + y2

2
+

2
π2

∫
∞

−∞

∫
∞

−∞

u(x
′
,y
′
)dx

′
dy
′√

(x− x′)2 +(y− y′)2

(57)

For incompressible EHL problem κ-line distributive
Jacobi splitting is written as consider the convection
term of above Example 3.3 as

∂h
∂x

=
1
hx

[
(Hi, j−Hi−1, j)−

κ

2
(Hi, j−Hi−1, j)+

1+κ

4
(Hi+1, j−Hi, j)−

1−κ

4
(Hi−1, j−Hi−2, j)

]
(58)
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Now we will consider the following Splitting : Ls4

−ε

[{
ui+1, j+σi+1−

(σi+σi+2)
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

x

−ε

[{
ui−1, j+σi−1−

(σi−2+σi)
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

x

−ε

[{
ui, j+1−

σi
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

x

−ε

[{
ui, j−1−

σi
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

x

− 1
hx

[(
2−κ

2

)(
∑

i+1
k=i−1 σGik j jσk−∑

i
k=i−2 σGi−1k j jσk

)
−
{

1+κ

4 (Hi+1, j−Hi, j)− 1−κ

4 (Hi−1, j−Hi−2, j)

}]
= fi, j (59)

Another possibility is to consider the following split-
ting as

∂h
∂x =

1
hx

[
(Hi, j−Hi−1, j)− κ

2 (Hi, j−Hi−1, j)+

1+κ

4 (Hi+1, j−Hi, j)− 1−κ

4 (Hi−1, j−Hi, j+Hi, j−Hi−2, j)

]
(60)

Hence overall equation is rewritten as Splitting : Ls5

−ε

[{
ui+1, j+σi+1−

(σi+σi+2)
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

x

−ε

[{
ui−1, j+σi−1−

(σi−2+σi)
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

x

−ε

[{
ui, j+1−

σi
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

x

−ε

[{
ui, j−1−

σi
4

}
−
{

ui, j+σi−
(σi−1+σi+1)

4

}]/
h2

x

− 1
hx

[(
2−κ

2 + 1−κ

4

)(
∑

i+1
k=i−1 σGik j jσk−∑

i
k=i−2 σGi−1k j jσk

)
−
{

1+κ

4 (Hi+1, j−Hi, j)− 1−κ

4 (Hi, j−Hi−2, j)

}]
= fi, j. (61)

More general discussion on convergence of these
splittings are given in Section 5.

4 TVD Implementation in Point
Contact Model Problem

In this Section, we implement the splitting discussed
in the last Section 3 and allow to extend it in EHL
model. A hybrid splitting presented here and it is de-
termined by measuring the value of

min
(

ε(x,y)
hx

,
ε(x,y)

hy

)
.

This value is treated as switching parameter to per-
form two different splitting together while moving x
direction during the iteration. If the value

min
(

ε(x,y)
hx

,
ε(x,y)

hy

)
> 0.6

then we apply line Gauss-Seidel splitting otherwise
line Jacobi distributed splitting is incorporated in
other words

Lhs1 =

Ls1-splitting If min
(

ε(x,y)
hx

, ε(x,y)
hy

)
> 0.6

Ls4-splitting If min
(

ε(x,y)
hx

, ε(x,y)
hy

)
≤ 0.6.

(62)

Lhs2 =

Ls0-splitting If min
(

ε(x,y)
hx

, ε(x,y)
hy

)
> 0.6

Ls5-splitting If min
(

ε(x,y)
hx

, ε(x,y)
hy

)
≤ 0.6.

(63)

These constructions are well justified as the region
where ε tends to zero, we end up having an ill-
conditioned matrix system in the form of dense ker-
nel matrix appear in film thickness term. Therefore,
distributive Jacobi line splitting is implemented as a
right pre-conditioner to reduce the ill-conditioning of
the matrix. However, in other part where ε is suf-
ficiently large diffusion term dominates therefore we
use Gauss line splitting. Considering the above set-
ting in computational domain is quite demanding in
EHL model as it allows us in reducing computational
cost and storage issue. We replace κ value in splitting
constructed in Section 3 by incorporating appropriate
limiter function φ there. In next section, we define
these two splitting in more general form having lim-
iter function involve in the splitting.

4.0.1 Limiter based Line Gauss-Seidel splitting

EHL point contact problem is solved in the form of
LCP and therefore in this Section we seek an efficient
splitting for Reynolds equation iterate along x-line di-
rection to obtain the pressure solution. Now by using
Theorem 2 and Lemma 3 we prove the convergence
of the EHL solution. This splitting is explained in the
following way: First calculate updated pressure in x-
line direction as ūi, j = ũi, j +σi keeping j fix at a time
for all j in y-direction and then apply change σi im-
mediately to update the pressure ũ. The successive
pressure change σi along the x-direction can be calcu-
lated as below

εX
i+1/2, j [(ui+1, j+σi+1)−(ui, j+σi)]+εX

i−1/2, j [(ui−1, j+σi−1)−(ui, j+σi)]

hx

+
εY
i, j+1/2[ui, j+1−(ui, j+σi)]+εY

i, j−1/2[ui, j−1−(ui, j+σi)]

hy

−hy((ρH )∗i+1/2, j−(ρH )∗i−1/2, j)=0, (64)
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where terms read as

ε
X
i±1/2, j

defn
:= hyεi±1/2, j, ε

Y
i, j±1/2

defn
:= hxεi, j±1/2,

εi±1/2, j
defn
:= (εi, j + εi±1, j)/2, εi, j±1/2

defn
:= (εi, j + εi, j±1)/2,

(65)

where

εi, j =
ρ(i, j)H 3(i, j)

η(i, j)λ
.

(ρH )∗i+1/2, j
def
:=(ρ̌H̄ )i, j+

1
2 φ(ri+1/2)((ρ̌H̄ )i+1, j−(ρ̌H̄ )i, j) (66)

(ρH )∗i−1/2, j
def
:=(ρ̌H̄ )i−1, j+

1
2 φ(ri−1/2)((ρ̌H̄ )i, j−(ρ̌H̄ )i−1, j), (67)

where

ri+1/2=
(ρ̌H̃ )i+1, j−(ρ̌H̃ )i, j
(ρ̌H̃ )i, j−(ρ̌H̃ )i−1, j

and ri−1/2=
(ρ̌H̃ )i, j−(ρ̌H̃ )i−1, j

(ρ̌H̃ )i−1, j−(ρ̌H̃ )i−2, j
.

In above equation for each i,

H̄i, j = H̃i, j +∑
k

Gi,k, j, jσk (68)

It is observed that the magnitude of the kernel Gi,k, j, j
in equation 68 diminishes rapidly as distance |k− i|
increase and therefore, we avoid unnecessary com-
putation expense by allowing value of k up to three
terms. So updated value of film thickness is rewritten
as

H̄i, j = H̃i, j +
i+1

∑
k=i−1

Gi,k, j, jσk. (69)

Hence, Eqn. (64) is illustrated as

Ci+2,φ σi+2+Ci+1,φ σi+1+Ci,φ σi+Ci−1,φ σi−1+Ci−2,φ σi−2=Ri, j,φ ,
(70)

where Ri, j,φ and Ci±.,φ are residual and coefficients
of matrix arising due to linearized form involving the
limiter function. This setting leads to a band matrix
formulation which is solved using Gaussian elimina-
tion with minimum computational work (O(n)).

4.0.2 Limiter based Line-Distributed Jacobi
splitting

The understanding philosophy of line distributed Ja-
cobi splitting is more physical than mathematical.
When diffusive coefficient tends to zero, pressure be-
comes large enough and non local effect of film thick-
ness dominates in the region. Therefore a small de-
flection in pressure change produces high error in up-
dated film thickness eventually leads blow up the solu-
tion after few iterations. This numerical instability is

overcome by interacting with the neighborhood points
during iteration. During this process the computed
change of pressure at one point of the line are shared
to its neighbor cells. In other words, a given point of
a line new pressure ūi, j is computed from the summa-
tion of the changes coming from neighboring points
plus the old approximated pressure ũi, j

ūi, j = ũi, j +σi, j−
(σi+1, j +σi−1, j +σi, j+1 +σi, j−1)

4
(71)

In this case, changes are incorporated only at the end
of a complete iteration sweep. Therefore, overall
splitting is derived as below

εX
i+1/2, j [(ui+1, j+σi+1−

(σi+σi+2)
4 )−(ui, j+σi−

(σi−1+σi+1)
4 )]

hx

+
εX
i−1/2, j [(ui−1, j+σi−1−

(σi−2+σi)
4 )−(ui, j+σi−

(σi−1+σi+1)
4 )]

hx

+
εY
i, j+1/2[ui, j+1−

σi
4 −(ui, j+σi−

(σi−1+σi+1)
4 )]

hy
+

εY
i, j−1/2[ui, j−1−

σi
4 −(ui, j+σi−

(σi−1+σi+1)
4 )]

hy

−hy((ρH )∗i+1/2, j−(ρH )∗i−1/2, j)=0. (72)

The following notion used in Eqn. 72 defined as

ε
X
i±1/2, j

defn
:= hyεi±1/2, j

ε
Y
i, j±1/2

defn
:= hxεi, j±1/2 (73)

εi±1/2, j=0.5

(
ρ(i±1, j)H 3(i±1, j)

η(i±1, j)λ + ρ(i±1, j)H 3(i±1, j)
η(i±1, j)λ

)
,

εi, j±1/2=0.5

(
ρ(i, j±1)H 3(i, j±1)

η(i, j±1)λ + ρ(i, j±1)H 3(i, j±1)
η(i±1, j±1)λ

)
.

(ρH )∗i+1/2, j
def
:=(ρ̌H̄ )i, j+

1
2 φ(ri+1/2)((ρ̌H̄ )i+1, j−(ρ̌H̄ )i, j) (74)

(ρH )∗i−1/2, j
def
:=(ρ̌H̄ )i−1, j+

1
2 φ(ri−1/2)((ρ̌H̄ )i, j−(ρ̌H̄ )i−1, j),

(75)

where

ri+1/2=
(ρ̌H̃ )i+1, j−(ρ̌H̃ )i, j
(ρ̌H̃ )i, j−(ρ̌H̃ )i−1, j

and ri−1/2=
(ρ̌H̃ )i, j−(ρ̌H̃ )i−1, j

(ρ̌H̃ )i−1, j−(ρ̌H̃ )i−2, j
.

In above equation, discretization of convection term
defined same as Line Gauss-Seidel relaxation case.
However, due to distributive change of the pressure,
the updated value of film thickness is described as

H̄i, j = H̃i, j +∑
k

σGi,k, j, jσk, (76)
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where

σGi,i, j, j =Gi,i, j, j−(Gi,i−1, j, j+Gi,i+1, j, j+Gi,i, j, j−1+Gi,i, j, j+1).

After few manipulation of Eqn. 72, we get system of
band matrix which is solved using Gaussian elimina-
tion approach.
The force balance equation is incorporated in our nu-
merical calculation by updating the constant value
H00. The updated value of H00 is performed accord-
ing to

H00←H00− c
(2π

3
−hxhy

nx

∑
i=1

ny

∑
j=1

ui, j

)
, (77)

where c is a relaxation parameter having range be-
tween 0.01−0.1.

5 Fourier Analysis

Performance and asymptotic estimate of above split-
ting is measured through the Fourier analysis by con-
sidering infinite grid

G f
h := {x = (ξ1h,ξ2h) : ξ = (ξ1,ξ2) ∈ Z×Z}

(78)

and infinite grid function defined on G f
h by the linear

span of the Fourier components

Th=span

{
ϕ(θ ,x)=ei(ξ1θ1+ξ2θ2):θ=(θ1,θ2)∈(−π,π]2,x∈G f

h

}
.

These basis functions eiξ θ ∈ Th are orthogonal with
respect to the inner product

〈uh,vh〉 := lim
l→∞

1
4l2 ∑
|ξ |≤l

uh(ξ1h,ξ2h)vh(ξ1h,ξ2h),

(79)

where uh,vh ∈ Th. Furthermore, we will define or-
thogonal space to identity function I ∈ Th as

Th
⊥ = {vh : 〈I,vh〉= 0} (80)

Moreover, discrete solution uh is described as Fourier
transform û a linear combinations of the basis func-
tions eiξ θ ∈ Th

uh = lim
l→∞

1
2l ∑
|ξ |≤l

ûh(ξ )eiξ θ . (81)

The Fourier space Th is illustrated as four-
dimensional subspaces

Th
θ
=span{ϕ(θ α1α2 ,x)=eikθ

α1α2 ;α1,α2∈{0,1}}, where x∈G f
h;

θ 00∈(−π/2,π/2]2,θ α1α2=(θ1−α1sign(θ1)π,θ2−α2sign(θ2)π).

We say discretized PDE of the form

Lhuh = fh (82)

is solvable if fh ∈ Th
⊥. Moreover, solution will be

unique if uh ∈ Th
⊥. Let relaxation method defined via

operator splitting as

L+
h ūh +L−h ũh = fh, (83)

where ũh and ūh are old and updated approximation to
the solution uh. Now we are interested in constructing
a splitting which reduce our computed error signif-
icantly. Such behavior is investigated by measuring
error equation as

ēh = Shẽh, (84)

where ẽh = uh − ũh, ēh = uh − ūh and Sh :=
−(L+

h )
−1L−h . Now apply Fourier transform in above

equation for L̂+
h (θ) 6= 0 we have following relation

Shϕ(θ ,x) = Ŝh(θ)ϕ(θ ,x) ∀x ∈G f
h , (85)

and smoothing factor notation as

µ1(Sh) := sup{|Ŝh(θ)| : θ ∈Θhigh}, (86)

where Ŝh(θ) :=−L̂−h (θ)/L̂+
h (θ).

5.0.3 Fourier analysis of κ splitting

Let ũh
i, j current updated to the solution for given j line

we are solving equations. For given j a new updated
ūh

i, j for all i of that line according to{
−ε

ūi−1, j−2ūi, j+ūi+1, j
h2x

}
+

{
−ε

ūi, j−1−2ūi, j+ũi, j+1
h2y

}
+ a

h

{
(ūi, j−ūi−1, j)− κ

2 (ūi, j−ūi−1, j)+
1−κ

4 (ūi, j−ūi−1, j)

+ 1+κ

4 (ũi+1, j−ũi, j)− 1−κ

4 (ũi, j−ũi−2, j)

}
= fi, j, (87)

for 2≤ i≤ (nx−1) and for given value j such that 1≤
j≤ ny−1 holds. During Gauss-Seidel line relaxation,
we will use previously computed new solution of line
j−1 in our next new updated solution of line j. Hence
error equation is written as

−
{

ε

h2 +
a(1.25−0.75κ)

h

}
ēi−1, j+

{
4ε

h2 +
a(1.25−0.75κ)

h

}
ēi, j

−
{

ε

h2

}
ēi+1, j−

{
ε

h2

}
ēi, j−1−

{
ε

h2

}
ẽi, j+1

+

{
a(1+κ)

4h

}
(ẽi+1, j−ẽi, j)−

{
a(1−κ)

4h

}
(ẽi, j−ẽi−2, j)=0 (88)
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Figure 4: Smoothing factor of example 1 ( see Eqn
. 39) using splitting Ls0 for value ε = 10−6, κ = 1/3,
h = 1/64.

and κ-smoothing factor is denoted as

|S κ
h (θ1,θ2)|=∣∣∣ α1eiθ2+0.25β (1+κ)(eiθ1−1)−0.25β (1−κ)(1−e−i2θ1 )

(−α1−β (1.25−0.75κ))e−iθ1+4α1+β (1.25−0.75κ)−α1(e
iθ1+e−iθ2 )

∣∣∣, (89)

where α1 = ε/h2 and β = a/h. Smoothing factor plot
is given in Fig. 4 Two grid iteration matrix is written
as

C2h
h = Ih−Ph

2h(L2h)
−1R2h

h Lh (90)

and two grid error equation is defined as

enew = S ν2C2h
h S ν1eold = M 2h

h eold. (91)

Here by multiplying C2h
h to the space Th

θ
, where

θ ∈ Θ̃ 00 = Θ 00 − {θ : L2h(2θ 00) = 0} leaves the
space invariant.

C2h
h : Th

θ −→ Th
θ . (92)

Fourier representation of two grid is performed in fol-
lowing way

Lh : Th
θ −→ Th

θ , L2h : T2h
θ −→ T2h

θ (93)

Rh : Th
θ −→ T2h

θ , Ph : T2h
θ −→ Th

θ with θ ∈ Θ̃
00

(94)

S : Th
θ −→ Th

θ (θ ∈ Θ̃
00) (95)

Spectral radius is computed in the following way

ρ
∗ = ρ(M 2h

h ) = sup
θ∈Θ̃ 00

ρ(M 2h
h (θ)) = sup

θ∈Θ̃ 00
ρ(θ),

(96)

where

M̃ 2h
h (θ)=S̃ ν2 (Ih−P̃h

2h(L̃2h)
−1R̃2h

h L̃h)S̃
ν1 ,M̃ 2h

h (θ)=M 2h
h |Th

θ

(θ∈Θ̃ 00).

(97)

The Fourier symbols of the multi-grid operators for
each harmonic in Th

θ
is calculated as follows:

S̃ν =


µ(θ 00)

µ(θ 10)
µ(θ 01)

µ(θ 11)


ν

,

(98)

L̃h =


L̃h(θ

00)
L̃h(θ

10)
L̃h(θ

01)
L̃h(θ

11)

 ,

(99)

R̃h = (R̃h(θ
00), R̃h(θ

10), R̃h(θ
01), R̃h(θ

11)),
(100)

P̃h = (P̃h(θ
00), P̃h(θ

10), P̃h(θ
01), P̃h(θ

11))T ,
(101)

L̃2h = L̃2h(2θ
00)
(102)

For the transfer operators

L̃h(θ
∗∗) = ∑

µx∈J
∑

µy∈J
ah(2)

µxµye
iθ ∗∗x µxeiθ ∗∗y µy (103)

L̃2h(2θ
00) = ∑

µx∈J
∑

µy∈J
a2h(2)

µxµy eiθ 00
x µxeiθ 00

y µy (104)

Since we can always get a nonsingular matrix P same
order as C2h

h such that PC2h
h P−1 = Q2h

h holds, where
Q2h

h a block matrix consisting of 4×4 diagonal block
Q̃2h

h (θ) looks for all θ ∈ Θ̃00 like

Q̃2h
h =


0

1
1

1

 (105)

then the smoothing factor is equivalent to

µ = sup
θ∈Θ̃00

ρ(S̃(θ)Q2h
h (θ)) = sup

θ∈Θ̃00

ρ(θ) (106)

Computation of µ is important for observing two-grid
convergence during relaxation. In next Section we il-
lustrate a criterion for two-grid convergence.

5.1 Convergence criterion of hybrid splitting

In this section, we give a general criteria for the con-
vergence study of hybrid schemes used in our EHL
model problem. Let us reconsider linear system

Lκu = f ,
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where [Lκ ]m×m a regular matrix (for definition see
[21]) and f and u are known values. For applying
hybrid splitting in above equation matrix Lκ is under-
stood as

Lκ = LΩε

κ LΩ′ε
κ ,

where [LΩε

κ ] and [LΩ′ε
κ ] are regular applied splittings in

Ωε =
{
(x,y)

∣∣∣min
(

ε(x,y)
hx

,
ε(x,y)

hy

)
≤ 0.6

}
and

Ω
′
ε =

{
(x,y)

∣∣∣min
(

ε(x,y)
hx

,
ε(x,y)

hy

)
> 0.6

}
sub-domains respectively.
Now assume that [LΩε

κ ] has the following splitting

LΩε

κ = MΩε

κ −NΩε

κ ,

where MΩε

κ is a regular easily invertible matrix and
NΩε

κ is a positive rest matrix. Then our splitting can
be defined as

un+1
Ωε

= un
Ωε
− (MΩε

κ )−1(LΩε

κ − f )

Then above iteration will converge for any initial
guess u0 if following theorem holds

Theorem 4 Let LΩε

κ = MΩε

κ −NΩε

κ be a regular split-
ting of matrix LΩε

κ and (LΩε

κ )−1 ≥ 0, then we have

ρ((MΩε

κ )−1NΩε

κ ) =
ρ((LΩε

κ )−1NΩε

κ )

1+ρ((LΩε

κ )−1NΩε

κ )
< 1

Proof 3 For the proof of this theorem we refer to see
Varga [21].

Now we will prove other part of matrix splitting LΩ′ε
κ .

This part of matrix there is no straightforward split-
ting is available (see [21, 26]). Let LΩ′ε

κ is regular, but
dense and the designing suitable splitting in the sense
of Varga is complicated. Suppose if it is possible to
construct nonsingular matrix Lr

κ such that equation be-
low

LΩ′ε
κ Lr

κ = MΩ′ε
κ −NΩ′ε

κ

is easy to solve and we can rewrite splitting as

LΩ′ε
κ = (MΩ′ε

κ −NΩ′ε
κ )Lr

κ

−1

Then for above splitting our iteration is denoted as

un+1 = un−Lr
κ(M

Ω′ε
κ )−1(LΩ′ε

κ − f )

Therefore above iteration will converge for any initial
guess if following theorem holds

Theorem 5 Let (MΩ′ε
κ − NΩ′ε

κ )(Lr
κ)
−1 be a regular

splitting of matrix LΩ′ε
κ and (LΩ′ε

κ )−1 ≥ 0, then we have

ρ(Lr
κ(M

Ω′ε
κ )−1NΩ′ε

κ (Lr
κ)
−1)=

ρ((LΩ′ε
κ )−1NΩ′ε

κ (Lr
κ)
−1)

1+ρ((LΩ′ε
κ )−1NΩ′ε

κ (Lr
κ)
−1)

< 1

The following theorem providing sufficient conditions
for the convergence of the two-grid method Q2 ( de-
fine in Eqn.105) is due to Hackbusch.

Theorem 6 Let us assume that Sl is a smoothing op-
erator for Kl that means there exist η(ν) and ν ′(h) so
that the following condition holds

||KlS
ν

l ||F←U≤η(ν) ∀ ν :1≤ν≤ν ′(h), l≥2,

η(ν)→0 for ν→∞, ν ′(h)=∞ or ν ′(h)→∞ for h→0

(107)

and also assume that operator Kl is approximated ac-
curately (by prolongation and restriction operator) in
the following sense such that ∃ CA→ 0, independent
of h so that

||K−1
l −P(Kl−1)

−1R||U←F ≤CA ∀ l ≥ 2 (108)

then there exist h and ν ∈ N:

||Q2,l(ν ,0)||U←U ≤CAη(ν)< 1 (109)

holds for ν with ν ′(hl)≥ ν ≥ ν(hl) and h2≤ h and the
two-grid method Q2,l from Eqn. 97 converges mono-
tonically, independently of h.

Proof 4 It follows straight way by taking Q2,l(ν ,0) =
(K−1

l −P(Kl−1)
−1R)(KlS

ν
l ).

6 Numerical Results

In Section 3, we have illustrated TVD implementa-
tion for solving linear convection-diffusion problem
through a class of splittings. Now we investigate
the performance of mentioned splittings and compare
the results with classical defect-correction. For nu-
merical tests we consider analytical solution as u =
x4 + y4 from Oosterlee [17]. All numerical computa-
tions is performed on author’s personal laptop having
2GB RAM and Intel(R) Core(TM) i3-2328M CPU @
2.20GHz. Dirichlet boundary is imposed for all test
cases on domain Ω =

{
(x,y);−1 ≤ x ≤ 1,−1 ≤ y ≤

1
}

. For all numerical experiments, we take diffusion
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Figure 5: Comparison of residual decay of splitting
Ls0 and splitting Ls1 for κ = 1/3 on 7th level V (2,1)
cycle
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Figure 6: Comparison of residual decay of splitting
Ls0, splitting Ls1 and classical Defect-correction for
κ = 0.0 on 7th level V (2,1) cycle

coefficient ε = 10−6 and κ =−1.0,0.0,1/3. Numeri-
cal tests are performed for the problem given as Exam-
ple 3.1 using Ls0 splitting, Ls1 splitting and classical
defect-correction technique using hierarchical multi-
level grid. Computational results of relative error and
corresponding order in L1,L∞,L2-norms are presented
on Table 1- 6 on the finest grid level (7th level using
3V (2,1) cycle). L2 norm error is evaluated in the
following way

L2(k,k−1) =

√
Hd ∑

(
ũk−1− IH

h ūk
)2

, (110)

where H is the mesh size on grid k−1, ūk is the con-
verged solution on grid k and d denotes the dimension
of the problem. The order of convergence is derived
as

p2 =
logL2(k−1,k−2)− logL2(k,k−1)

log2
, (111)

where p2 is the order of discretization in L2 norm.
We also calculate L∞ and L1-error and correspond-
ing order in similar fashion. From numerical ex-
periments we observe that splitting Ls0 and Ls1 al-
ways show fast residual decay compare to classical

Table 1: Comparison of L∞-, L1-, and L2-error
obtained for splitting Ls1 in case of the linear
convection-diffusion equation (Example 3.1 ε =
10−6,κ = 1/3) over the domain Ω = [−1,1]× [−1,1].

N L∞-error p∞ L1-error p1 L2-error p2

16×16 1.19566e-02 – 2.25624e-03 – 1.83208e-02 –
32×32 2.62647e-03 2.1866 3.57540e-04 2.6577 2.92872e-03 2.6451
64×64 5.70763e-04 2.2022 4.33084e-05 3.0454 3.64904e-04 3.0047

128×128 1.06927e-04 2.4163 5.45271e-06 2.9896 4.73857e-05 2.9450
256×256 1.92096e-05 2.4767 6.79793e-07 3.0038 6.09179e-06 2.9595
512×512 3.40453e-06 2.4963 8.44721e-08 3.0085 7.74616e-07 2.9753

Table 2: Comparison of L∞-, L1-, and L2-error
obtained for splitting Ls1 in case of the linear
convection-diffusion equation (Example 3.1 ε =
10−6,κ = 0.0) over the domain Ω = [−1,1]× [−1,1].

N L∞-error p∞ L1-error p1 L2-error p2

16×16 1.27672e-02 – 1.49677e-03 – 1.36680e-02 –
32×32 2.73792e-03 2.2213 1.80364e-04 3.0529 1.82037e-03 2.9085
64×64 6.22587e-04 2.1367 7.33006e-05 1.2990 6.63061e-04 1.4570

128×128 2.07084e-04 1.5881 2.37525e-05 1.6257 2.13343e-04 1.6360
256×256 5.98623e-05 1.7905 6.73718e-06 1.8179 5.99206e-05 1.8321
512×512 1.58405e-05 1.9180 1.79203e-06 1.9106 1.58361e-05 1.9198

defect-correction. Fig. 5 and Fig. 6 present the resid-
ual decay results for Ls0 splitting , Ls1 splitting and
classical defect-correction technique for κ = 0.0,1/3.
Moreover, residual decay of splitting Ls1 is more bet-
ter than splitting Ls0. On the other hand, we ob-
serve that splitting Ls0 has larger range of robustness
(−1.0≤ κ ≤ 0.9) than splitting Ls1 (−1.0≤ κ ≤ 0.8).

6.1 Test case for numerical experiment of
EHL problem

In this section, we perform numerical experiments
on EHL model defined in Section 1. We take Moes
([9]) dimensionless parameters (which is denoted by
M and L), where L is fixed at 10 while M is var-
ied between 20− 1000. For all test cases, we fix
the parameter α = 1.7 × 10−8 over domain Ω =
[−2.5,2.5]× [−2.5,2.5]. In all cases , we refine grid
up to (1024+ 1)× (1024+ 1) points on finest level

Table 3: Comparison of L∞-, L1-, and L2-error
obtained for splitting Ls1 in case of the linear
convection-diffusion equation (Example 3.1 ε =
10−6,κ = −1.0) over the domain Ω = [−1,1] ×
[−1,1].

N L∞-error p∞ L1-error p1 L2-error p2

16×16 2.32470e-03 – 1.56030e-02 – 2.05497e-02 –
32×32 1.01308e-03 1.1983 1.00995e-02 0.62754 9.31777e-03 1.1411
64×64 3.78032e-04 1.4222 4.35094e-03 1.2149 3.42296e-03 1.4447

128×128 1.07979e-04 1.8078 1.44691e-03 1.5884 9.67504e-04 1.8229
256×256 2.86739e-05 1.9129 4.47319e-04 1.6936 2.54980e-04 1.9239
512×512 7.39007e-06 1.9561 1.28974e-04 1.7942 6.53620e-05 1.9639
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Table 4: Comparison of L∞-, L1-, and L2-error
obtained for splitting Ls0 in case of the linear
convection-diffusion equation (Example 3.1 ε =
10−6,κ = −1.0) over the domain Ω = [−1,1] ×
[−1,1].

N L∞-error p∞ L1-error p1 L2-error p2

16×16 1.62417e-02 – 2.30732e-03 – 2.04151e-02 –
32×32 1.01696e-02 0.67544 1.03223e-03 1.1605 9.53668e-03 1.0981
64×64 3.89903e-03 1.3831 3.65800e-04 1.4966 3.32527e-03 1.5200

128×128 1.20459e-03 1.6946 1.05973e-04 1.7874 9.49264e-04 1.8086
256×256 3.42856e-04 1.8129 2.84576e-05 1.8968 2.52429e-04 1.9109
512×512 9.05700e-05 1.9205 7.36748e-06 1.9496 6.49791e-05 1.9578

Table 5: Comparison of L∞-, L1-, and L2-error
obtained for splitting Ls0 in case of the linear
convection-diffusion equation (Example 3.1 ε =
10−6,κ = 1/3) over the domain Ω = [−1,1]× [−1,1].

N L∞-error p∞ L1-error p1 L2-error p2

16×16 1.17579e-02 – 2.25826e-03 – 1.83078e-02 –
32×32 1.76038e-03 2.7397 3.32640e-04 2.7632 2.72048e-03 2.7505
64×64 2.57573e-04 2.7728 4.20422e-05 2.9841 3.43166e-04 2.9869

128×128 3.47087e-05 2.8916 5.37451e-06 2.9676 4.37263e-05 2.9723
256×256 4.54820e-06 2.9319 6.78313e-07 2.9861 5.51381e-06 2.9874
512×512 6.02630e-07 2.9160 8.51091e-08 2.9946 6.91644e-07 2.9949

Table 6: Comparison of L∞-, L1-, and L2-error
obtained for splitting Ls0 in case of the linear
convection-diffusion equation (Example 3.1 ε =
10−6,κ = 0.0) over the domain Ω = [−1,1]× [−1,1].

N L∞-error p∞ L1-error p1 L2-error p2

16×16 1.24738e-02 – 1.50246e-03 – 1.36309e-02 –
32×32 2.00172e-03 2.6396 1.73122e-04 3.1175 1.68694e-03 3.0144
64×64 5.88728e-04 1.7656 6.97083e-05 1.3124 6.33640e-04 1.4127

128×128 1.84579e-04 1.6734 2.31011e-05 1.5934 2.08905e-04 1.6008
256×256 5.06126e-05 1.8667 6.64633e-06 1.7973 5.93352e-05 1.8159
512×512 1.28329e-05 1.9796 1.78059e-06 1.9002 1.57608e-05 1.9125

Table 7: Minimum film thickness result (M = 20,L =
10) for defect-correction κ = 0.0

Level Hm Hm(Moes) Hc Hc(Moes) Hc(Moes)(px = 0)
1 1.99302e-01 1.92424 2.98940e-01 2.88624 2.77154
2 2.59716e-01 2.50753 3.70695e-01 3.57903 3.57760
3 2.70939e-01 2.61589 3.89566e-01 3.76122 3.75880
4 2.74629e-01 2.65151 3.94288e-01 3.80681 3.80443
5 2.75320e-01 2.65819 3.95428e-01 3.81782 3.81582
6 2.75525e-01 2.66016 3.95886e-01 3.82224 3.82034
7 2.75586e-01 2.66075 3.95962e-01 3.82297 3.82117

Table 8: Comparison of L∞, L1 and L2 relative errors
obtained with κ = 0.0 by Defect-Correction over the
domain Ω = [−2.5,2.5]× [−2.5,2.5].

N L∞-error p∞ L1-error p1 L2-error p2

16×16 1.57629e-01 – 4.56501e-03 – 9.85013e-02 –
32×32 1.75975e-01 -0.15884 2.01928e-03 1.1768 5.98804e-02 0.71806
64×64 1.69726e-01 0.052163 9.26960e-04 1.1233 3.78143e-02 0.66315

128×128 1.18555e-01 0.51765 3.56082e-04 1.3803 1.79500e-02 1.0749
256×256 7.20097e-02 0.71929 1.26752e-04 1.4902 7.87096e-03 1.1894
512×512 3.16527e-02 1.1859 4.43601e-05 1.5147 2.76403e-03 1.5098

and coarse grid up to (32+ 1)× (32+ 1) points on
the coarsest level (except extremely high load case we
choose coarse grid (64+1)×(64+1)). A class of lim-
iter are applied to solve the problem discussed in Sec-
tion 3 and 4. However, for checking performance of
splittings, we use value κ = 0.0,1/3,−1.0 in our nu-
merical analysis. In Fig. 8, we represent film thickness
profile H in inverted form. Four load cases (a)M =
20,L = 10, (b)M = 50,L = 10, (c) M = 100,L = 10
and (c) M = 1000,L = 10 are solved using the TVD
schemes. The fully converged pressure as well as
film thickness profiles and their plot results are repre-
sented in Fig. 8-Fig.12. Comparisons of relative error
in L2,L1 and L∞ norms between κ splittings and de-
fect correction schemes are performed which are pre-
sented in Table. 7- 17. Experimental results show that
order of convergence of classical defect-correction is
almost similar to splittings Lhs1 and Lhs2. However,
splittings Lhs1 and Lhs2 have slightly better residual
decay in comparison with classical defect-correction
which can be seen in Fig. 7.

Table 9: Comparison of L∞, L1 and L2 relative errors
obtained with κ = 1/3 by Defect-Correction over the
domain Ω = [−2.5,2.5]× [−2.5,2.5].

N L∞-error p∞ L1-error p1 L2-error p2

16×16 1.57629e-01 – 4.56501e-03 – 9.85013e-02 –
32×32 1.75975e-01 -0.15884 2.01928e-03 1.1768 5.98804e-02 0.71806
64×64 1.69726e-01 0.052163 9.26960e-04 1.1233 3.78143e-02 0.66315

128×128 1.18555e-01 0.51765 3.56082e-04 1.3803 1.79500e-02 1.0749
256×256 7.20097e-02 0.71929 1.26752e-04 1.4902 7.87096e-03 1.1894
512×512 3.16527e-02 1.1859 4.43601e-05 1.5147 2.76403e-03 1.5098

Peeyush Singh
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 52 Volume 5, 2020



Table 10: Comparison of L∞, L1 and L2 errors ob-
tained with κ = −1.0 by Defect-Correction over the
domain Ω = [−2.5,2.5]× [−2.5,2.5].

N L∞-error p∞ L1-error p1 L2-error p2

16×16 1.57629e-01 – 4.56501e-03 – 9.85013e-02 –
32×32 1.75975e-01 -0.15884 2.01928e-03 1.1768 5.98804e-02 0.71806
64×64 1.69726e-01 0.052163 9.26960e-04 1.1233 3.78143e-02 0.66315

128×128 1.18555e-01 0.51765 3.56082e-04 1.3803 1.79500e-02 1.0749
256×256 7.20097e-02 0.71929 1.26752e-04 1.4902 7.87096e-03 1.1894
512×512 3.16527e-02 1.1859 4.43601e-05 1.5147 2.76403e-03 1.5098

Table 11: Comparison of L∞, L1 and L2 errors ob-
tained (M=20,L=10 case) with κ = 0.0 by splitting
Lhs1 over the domain Ω = [−2.5,2.5]× [−2.5,2.5].

N L∞-error p∞ L1-error p1 L2-error p2

32×32 7.99935e-02 – 3.25500e-03 – 4.31253e-02 –
64×64 6.76884e-02 0.240974 4.20806e-04 2.951430 1.35161e-02 1.673856

128×128 3.53135e-02 0.938689 1.14226e-04 1.881264 5.18955e-03 1.380998
256×256 1.01542e-02 1.798143 3.02821e-05 1.915354 1.35755e-03 1.934604
512×512 1.98897e-03 2.351983 8.51309e-06 1.830711 3.06834e-04 2.145475

1024×1024 4.02685e-04 2.304298 3.13898e-06 1.439387 8.16286e-05 1.910312

Table 12: Comparison of L∞, L1 and L2 errors
obtained for (M=20,L=10 case) with κ = 1/3 by
splitting Lhs1 over the domain Ω = [−2.5,2.5] ×
[−2.5,2.5].

N L∞-error p∞ L1-error p1 L2-error p2

32×32 1.28495e-01 – 3.46499e-03 – 4.97302e-02 –
64×64 6.61681e-02 0.957504 4.17570e-04 3.052761 1.40651e-02 1.822002

128×128 3.34724e-02 0.983164 1.07470e-04 1.958084 5.05401e-03 1.476619
256×256 8.88278e-03 1.913889 2.70266e-05 1.991482 1.23452e-03 2.033478
512×512 1.64936e-03 2.429105 7.15546e-06 1.917264 2.47734e-04 2.317086

1024×1024 2.79280e-04 2.562122 2.77208e-06 1.368076 6.00344e-05 2.044930

Table 13: Comparison of L∞, L1 and L2 errors ob-
tained (M=20,L=10 case) with κ = −1.0 by splitting
Lhs1 over the domain Ω = [−2.5,2.5]× [−2.5,2.5].

N L∞-error p∞ L1-error p1 L2-error p2

32×32 7.50604e-02 – 2.97122e-03 – 4.14394e-02 –
64×64 7.55099e-02 -0.008614 5.91844e-04 2.327767 1.69667e-02 1.288297

128×128 4.53322e-02 0.736130 1.91253e-04 1.629735 7.61954e-03 1.154930
256×256 1.61611e-02 1.488011 5.75179e-05 1.733400 2.50645e-03 1.604059
512×512 4.50872e-03 1.841736 1.67111e-05 1.783204 6.94586e-04 1.851420

1024×1024 1.10782e-03 2.024994 5.21125e-06 1.681105 1.89643e-04 1.872867

Table 14: Comparison of L∞, L1 and L2 errors ob-
tained for (M=20, L=10) with κ = 0.0 by splitting Lhs2
over the domain Ω = [−2.5,2.5]× [−2.5,2.5].

N L∞-error p∞ L1-error p1 L2-error p2

32×32 7.91753e-02 – 3.24093e-03 – 4.29201e-02 –
64×64 6.76405e-02 0.227163 4.21527e-04 2.942711 1.35422e-02 1.664191

128×128 3.53098e-02 0.937819 1.14185e-04 1.884252 5.18823e-03 1.384148
256×256 1.01543e-02 1.797978 3.02794e-05 1.914965 1.35750e-03 1.934290
512×512 1.99380e-03 2.348498 8.51277e-06 1.830636 3.07193e-04 2.143735

1024×1024 4.04313e-04 2.301976 3.13219e-06 1.442457 8.15121e-05 1.914059

Table 15: Comparison of L∞, L1 and L2 errors ob-
tained for (M=20, L=10) with κ = 1/3 by splitting
Lhs2 over the domain Ω = [−2.5,2.5]× [−2.5,2.5].

N L∞-error p∞ L1-error p1 L2-error p2

32×32 1.27894e-01 – 3.45271e-03 – 4.95561e-02 –
64×64 6.61606e-02 0.950904 4.17669e-04 3.047297 1.40784e-02 1.815579

128×128 3.34692e-02 0.983138 1.07437e-04 1.958869 5.05304e-03 1.478260
256×256 8.88371e-03 1.913600 2.70267e-05 1.991034 1.23467e-03 2.033026
512×512 1.65390e-03 2.425290 7.15902e-06 1.916551 2.48217e-04 2.314452

1024×1024 2.80907e-04 2.557708 2.76808e-06 1.370876 5.99858e-05 2.048909

Table 16: Comparison of L∞, L1 and L2 errors ob-
tained for (M=20, L=10) with κ = −1.0 by splitting
Lhs2 over the domain Ω = [−2.5,2.5]× [−2.5,2.5].

N L∞-error p∞ L1-error p1 L2-error p2

32×32 7.47880e-02 – 2.95607e-03 – 4.12735e-02 –
64×64 7.54384e-02 -0.012492 5.94019e-04 2.315099 1.70337e-02 1.276824

128×128 4.53370e-02 0.734610 1.91320e-04 1.634521 7.62081e-03 1.160376
256×256 1.61613e-02 1.488146 5.75274e-05 1.733667 2.50667e-03 1.604172
512×512 4.51054e-03 1.841171 1.67195e-05 1.782718 6.94549e-04 1.851624

1024×1024 1.10616e-03 2.027740 5.21053e-06 1.682030 1.89516e-04 1.873757

Table 17: Comparison of L∞, L1 and L2 errors ob-
tained for EHL M=50 and L=10 with κ = 0.0 by
splitting Lhs2 over the domain Ω = [−2.5,2.5] ×
[−2.5,2.5].

N L∞-error p∞ L1-error p1 L2-error p2

16×16 1.58602e-01 – 1.03810e-02 – 1.33934e-01 –
32×32 1.37546e-01 0.205497 2.42128e-03 2.100104 6.26015e-02 1.097253
64×64 9.91830e-02 0.471749 1.00043e-03 1.275150 3.00041e-02 1.061038

128×128 1.28502e-01 -0.373626 5.50322e-04 0.862272 2.15520e-02 0.477338
256×256 8.01042e-02 0.681841 3.32311e-04 0.727742 1.01793e-02 1.082183
512×512 4.33380e-02 0.886245 9.52456e-05 1.802810 3.69633e-03 1.461473
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Figure 7: Comparison of residual decay of EHL
by splitting Lhs1, splitting Lhs2 and classical Defect-
correction at κ = 0.0 on 7th level V (2,1) cycle

7 Conclusion

A limiter based hybrid line splittings have been out-
lined for solving EHL point contact problem (in the
form of LCP) on hierarchical multi level grid. The
key idea of using such splitting to facilitate artificial

Figure 8: Typical H Plot for Moes parameters M =
20,L = 10,α = 1.7×10−8 at 6th level W-cycle
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Figure 9: P Plot for Moes parameters M = 20,L =
10,α = 1.7×10−8 at 6th level W-cycle

Figure 10: P Plot for Moes parameters M = 50,L =
10,α = 1.7×10−8 at 7th level V-cycle

Figure 11: Pressure Plot Moes parameters M =
100,L = 10,α = 1.7×10−8 at 7th level V-cycle

Figure 12: Pressure Plot Moes parameters M =
1000,L = 10,α = 1.7×10−8 at 7th level V-cycle

diffusion only the region of steep gradient of pres-
sure profile and to improve the accuracy on the other
part (smooth region of pressure profile) of the do-
main. These illustrated splittings have been devised
by bringing left hand side matrix in M-matrix form
using second order discretization of Reynolds equa-
tion and rest term on the right hand side. Additionally,
the hybrid line splitting has been designed with help
a switcher which depends upon magnitude of ε/h.
When ε/h ≤ 0.6, we have applied distributive Jacobi
line splitting else, we have implemented Gauss-Seidel
line splitting during updating new solution. The de-
rived switcher is important as it noticeably allows us
in reducing the ill-conditioning of the discretized ma-
trix when ε is almost equal to zero. The robustness
of the splittings have been analyzed performing se-
ries of numerical experiments. Moreover, robustness
range of splittings has been investigated and com-
pared with other splittings. For linear κ− discretiza-
tion, we have performed Fourier analysis in order to
validate the multi-grid convergence behavior theoret-
ically. Numerical experiments conform that the per-
formance of these hybrid line splittings are robust not
only for linear case but also for EHL model too. A
remarkable achievement of these splittings are that
it helps us in developing of higher-order discretiza-
tion without losing stability in relaxation and without
the use of double discretization scheme like defect-
correction technique in multi-grid solver. Numeri-
cal experiments confirm that residual decay of direct
splittings are comparably better than classical defect-
correction. In this study, we have analyzed the per-
formance of splittings through known limiters avail-
able in literature which works satisfactory in all study
cases. Another remarkable advantage of the adopted
splittings can be noted as it does not demand any extra
tuning parameter and produces reasonable numerical
solution for large range of load variation. The above
treatment can be easily extendable in time dependent
EHL as well as Thermo-elastic Lubrication model.
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A Some Notation used in EHL model

pH →Maximum Hertzian pressure.
η0→ Ambient pressure viscosity.
H00→ Central offset film thickness.
a→ Radius of point contact circle.
α → Pressure viscosity coefficient.
us = u1 + u2, where u1 upper surface velocity and u2
lower surface velocity respectively.
p0→ Constant (p0 = 1.98×108), z is pressure viscos-
ity index (z = 0.68).
R→ Reduced radius of curvature defined as R−1 =
R−1

1 +R−1
2 ,

where R1 and R2 are curvature of upper contact sur-
face and lower contact surface respectively.
L and M are Moes parameters and they are related as
below.
L = G(2U)

1
4 ,M =W (2U)−

1
2 , where

2U =
(η0us)

(E ′R)
,W =

F
E ′R

, pH =
(3F)

(2πa2)
.

σn+1 = un+1−un denote as difference between latest
approximation solution un+1 and its predecessor un.

References:

[1] Ahmed, S., Goodyer, C. E., and Jimack, P. K.
An adaptive finite element procedure for fully-
coupled point contact elastohydrodynamic lubri-
cation problems. Comput. Methods Appl. Mech.
Engrg. 282 (2014) 121, 282 (2014), 1–20.

[2] Cimatti, G. On a problem of the theory of lubri-
cation governed by a variational inequality. Appl.
Math. Optim. 3 (1977), 227–242.

[3] Dowson, D., and Higginson, G. R. Elastohydro-
dynamic Lubrication. Pergamon Press, Oxford,
1966.

[4] Lubrecht, A. A., and Venner, H. C. Multi level
methods in lubrication. Elsevier, 2000.

[5] Venner, H. C. Multilevel solution of the EHL line
and point contact problems. PhD dissertation,
University of Twente, 1991.

[6] Hamrock, B. J., Schmid, S. R., and Jacobson,
B. O. Fundamental of fluid film lubrication. Mar-
cell Dekker, New York, 1982.

[7] Lubrecht, A. A. The numerical solution of the
elastohydrodynamically lubricated line and point

contact problem using multigrid techniques. PhD
dissertation, University of Twente, 1987.

[8] Singh, P. Numerical study of elastohydrodynamic
lubrication. PhD dissertation, IIT Kanpur, 2017.

[9] Moes, H. Optimum similarity analysis with appli-
cations to elastohydrodynamic lubrication. Wear
159 (1992), 57–66.

[10] Venner, H. C. High order multilevel solvers for
the ehl line and point contact problem. Jour. of
Tribology 116 (1994), 741–750.

[11] Holmes, M. J. A., Evans, H. P., Hughes, T. G.,
and Snidle, R. W. Transient elastohydrodynamic
point contact analysis using a new coupled differ-
ential deflection method part 1: theory and valida-
tion. Proceedings of the Institution of Mechanical
Engineers: Part J 217 (2003), 289–303.

[12] Lu, H., Berzins, M., Goodyer, C., and Jimack,
P. High-order discontinuous galerkin method for
elastohydrodynamic lubrication line contact prob-
lems. Commun Numer Meth Eng 21 (2005), 643–
650.

[13] W., H., D., E., Vergne, P., and G., M.-E. Sta-
bilized fully-coupled finite elements for elasto-
hydrodynamic lubrication problems. Adv. Eng.
Softw. 46 (2012), 4–18.

[14] Lugt, P. M., and Morales-Espejet, G. E. A re-
view of elasto-hydrodynamic lubrication theory.
Tribology Transactions 54 (2011), 470–496.

[15] Koren, B. A robust upwind discretization
method for advection, diffusion and source terms.
In Proceedings of the Seminar on Advection-
Diffusion Problems (Braunschweig/Wiesbaden:
Vieweg, 1993), C. Vreugdenhil and B. Koren,
Eds., vol. 45 of Notes on Numerical Fluid Me-
chanics, pp. 117–138.

[16] Koren, B. Defect correction and multigrid for
an efficient and accurate computation of airfoil
flows. J. Comput. Phys. 77 (1988), 183–206.

[17] Oosterlee, C. W., Gaspar, F. J., Washio, T., and
Wienands, R. Multigrid line smoothers for higher
order upwind discretizations of convection-
dominated problems. J. Comput. Phys. 1 (1998),
274–307.

Peeyush Singh
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 55 Volume 5, 2020



[18] Harten, A. A high resolution scheme for the
computation of weak solution of hyperbolic con-
servation laws. J. Comp. Phys. 49 (1983), 357–
393.

[19] Harten, A., and Lax, P. D. On a class of high
resolution total-variation-stable finite-difference
schemes. SIAM J. Numer. Anal. 21, 1 (1984), 1–
23.

[20] Sweby, P. K. High resolution schemes using flux
limiters for hyperbolic conservation laws. SIAM
J.Num. Anal. 21 (1984), 995–1011.

[21] Varga, R. S. Matrix iterative analysis. Prentice-
Hall, 1962.

[22] Oosterlee, C. W. On multigrid for linear comple-
mentarity problems with application to american-
style options. ETNA 15 (2003), 165–185.

[23] Brandt, A., and Cryer, C. W. Multigrid algo-
rithm for the solution of complementarity prob-
lems arising from free boundary value problems.
SIAM.J.Sci. Stat. Comput. 4, 4 (1983), 655–684.

[24] Brandt, A., and Lubrecht, A. A. Multilevel ma-
trix multiplication and fast integration equation.
Jour. Comp. Phys. 90 (1989), 348–370.

[25] Brandt, A., and Dinar, N. Multigrid solutions to
elliptic flow problems. ICASE Report Nr Else-
vier Science, https://doi.org/10.1016/B978-0-12-
546050-7.50008-3, 1979.

[26] Wittum, G. On the convergence of multi-grid
methods with transforming smoothers. Numer.
Math 57 (1989), 15–38.

[27] Brandt, A. Multi-level adoptive solutions to
boundary value problems. Math. Comp. 31
(1977), 333–390.

[28] Hackbusch, W. Multi-grid methods and applica-
tions, 2 ed. Springer-Verlag, 2003.

[29] van Leer, B. Upwind-difference methods for
aerodynamic problems governed by the Euler
equations. In Proceedings of large scale com-
putations in fluid mechanics (Providence, RI,
1985), B. Enquist, S. Osher, and R. Somerville,
Eds., vol. 22 of Lectures in Applied Mathematics,,
Amer. Math. Soc., pp. 327–336.

[30] Cryer, C. W. The solution of a quadratic pro-
gramming problem using systematic overrelax-
ation. SIAM.J.Control 9, 3 (1971), 385–392.

Peeyush Singh
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 56 Volume 5, 2020


	Introduction
	Model Problem

	Preliminaries
	Smooth kernel computation using MLMI
	Singular-Smooth or mild singular Kernel computation using MLMI

	Multi-Grid Method for variational inequality arising in EHL Problem

	Linear study for convection-diffusion problem
	TVD Implementation in Point Contact Model Problem
	Limiter based Line Gauss-Seidel splitting
	Limiter based Line-Distributed Jacobi splitting


	Fourier Analysis
	Fourier analysis of  splitting
	Convergence criterion of hybrid splitting

	Numerical Results
	Test case for numerical experiment of EHL problem

	Conclusion
	Acknowledgment
	Some Notation used in EHL model



