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Abstract: - This paper presents the study of non local thermo elastic waves in a single walled carbon nanotube 

resting on polymer matrix via in plane magnetic effect. The analytical formulation is developed based on 

Eringen’s non-local elasticity model. The governing equations that contains partial differential equations for 

single walled carbon nanotube is derived by considering thermal field and longitudinal Lorenz magnetic force. 

The ultrasonic wave propagation analysis is carried out by spectral analysis method.  The polymer elastic 

matrix is considered as a function of temperature change. The computed non dimensional wave frequency, 

phase velocity and group velocity are investigated and are presented in the form of dispersion curves. Table 

values are presented for different physical values and are compared with exiting literature 
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1 Introduction 

Mechanical behavior of magneto thermo 

elastic(MTE) material will enhance the potential of 

nanostructure for amplification and for many 

applications in engineering. The interaction between 

Carbon Nanotubes (CNTs) and polymer matrix have 

gained great attention due to their vital mechanical 

properties. The CNT resting on a polymeric matrix 

will create a remarkable volume fraction in the 

interfacial layer between CNT and the bulk polymer 

matrix. Interface region plays a vital role to measure 

the overall elastic moduli of polymeric Nano 

composites so that the mechanical analysis of Nano 

composite structures will give the accurate result 

which may not possible in the absence of interface 

layer. Thus, modelling actual response of the 

interfacial region is the one of the most important 

issues in this type of study and also the impudence 

of Nano composites material as the inelastic 

systems. The investigations of this field have vividly 

depicted that the extent of impact of CNTs greatly 

depends on the condition and response of interfacial 

layer between CNTs and the polymer matrix. 

     [1] proposed the chemistry of fullerenes which 

leads to the discovery of the synthesis of carbon 

nanotubes and its properties. The mechanical 

properties of carbon nanotubes (CNTs) have been 

proposed from the dates of CNTs discovered by  [2]  

Recently, continuum elastic beam models have been 

widely used to study vibration [3],[4] and Sound 

wave propagation [5]-[6] in CNTs. The nonlocal 

beam models have been further applied to the 

investigations of static and vibration properties of 

single and multi-walled carbon nanotubes  [7]-[10].  

Several studies [11], [12]  and  [13]  shows the fact 

that atomistic interaction in axial direction is 

significant for short CNTs. [14]  remarked that a 

higher small length scale effect can be found for 

shorter CNTs. The mechanical properties of CNTs 

with temperature change are of great interest in 

Nano Electro Mechanical System (NEMS). [15]  

investigated the thermal expansion of helical CNTs 

arrays. [16]  studied the thermal effects on 

interfacial stress transfer characteristics of single 

walled and multi walled carbon nanotubes / polymer 

composite systems via thermal loading by means of 

thermo elastic theory and conventional fibre pilot 

models.  [17] conducted an analysis of buckling 

behaviour of SWCNTs subjected to axial 

compression under a thermal environment.  [18] 

investigated the temperature dependent elastic 

properties of SWCNTs by molecular dynamics 

simulation. They found the effect of temperature on 

the buckling of carbon nanotubes, the bending, 

torsion, and radial compression buckling of a 

double-walled carbon nanotube and multi-walled 

nanotubes.  [19] , [20]  analyzed the thermal effect 

on torsional and axially compressed buckling of 

MWCNTs.  Zhang et al.[21] studied the thermal 

effect on transverse vibrations of DWCNTs using 

classical continuum model.  
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      The mechanical behaviour of single and multi-

walled carbon nanotubes bedded in polymer matrix 

has attaracted much by the  recent days of 

researchers.  [22] investigated the thermal effect on 

wave propagation in double walled carbon 

nanotubes embedded in a polymer matrix using 

nonlocal elasticity. They identified that the non local 

effect becomes larger at higher values of vibration 

mode. The nonlinear vibration of embedded carbon 

nanotubes was analysed by  [23]. The Influence of 

thermal and longitudinal magnetic field vibration of 

a fluid conveying double walled carbon nanotubes 

embedded in an elastic medium was studied by  

[24]. [25]  studied the different wave modes coupled 

in Longitudinal or transverse magnetic field. More 

recently, [26] have studied the vibrations of 

nonlocal Flugge shell model for SWCNTs under the 

longitudinal magnetic field based on wave 

propagation approach. Their analysis shows that the 

vibration frequencies of SWCNTs drop dramatically 

in the presence of the magnetic field for various 

circumferential wave numbers.   

Based on the above literature, the non local thermo 

elastic waves in a single walled carbon nanotube 

resting on polymer matrix with the longitudinal 

magnetic effect is studied using Eringen’s non local 

elasticity theory. The governing equations that 

contains partial differential equations for single 

walled carbon nanotube is derived by considering 

thermal and Lorentz magnetic force along with the 

nonlocal parameters. The computed non 

dimensional wave frequency, phase velocity and 

group velocity with respect to the polymer matrix 

support and thermal constant are presented in the 

form of dispersion curves. 
 

2  Mathematical Formulations  

2.1  Eringen nonlocal theory of elasticity   

     This theory assumes that stress state at a 

reference point X in the body is regarded to be 

dependent not only on the strain state at X but also 

on the strain states at the all other points of the 

body.  The general form of the constitutive 

equations in the non-local form of elasticity contains 

an integral over the entire region of interest.  The 

integral contains a non-local kernel function, which 

describes the relative influences of the strains at 

various locations on the stress at a given location.  

The constitutive equations of linear, homogeneous, 

isotropic, non-local elastic solid with zero body 

forces are given by Eringen [32] as follows 
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     Eq. (1) is the equilibrium equation, where 

jjiij uf ,,,,   are the stress tensor, mass density, 

body force density and displacement vector at a 

reference point X in the body, respectively, at the 

time t, Eq. (3) is the classical constitutive relation 

where )'(Xij
c  is the classical stress tensor at any 

point 'x  in the body, which is shown by )'(Xij
c  

which is related to the linear strain tensor )'(Xeij  at 

the same point. ( ')c
ij X  is the classical stress tensor 

at any point 'X  in the body, which is related to the 

linear strain tensor ( ')ije X  at the same point.  

Equations (4) are the classical strain displacement 

relationship. The kernel function ( ' , )X X   is the 

attenuation function which incorporated the 

nonlocal effect in the constitutive equations. The 

volume integral in (2)  is over the region v  occupied 

the body. It is clear that, the  only difference 

between (1)-(4) and the corresponding equations of 

classical elasticity in (2) replaces the Hooke’s law in 

(3) by  (2).  (2)  consists the  parameters which 

correspond to the non-local modulus has dimensions 

of 3)( lengh  and so it depends on a characteristic 

length (lattice parameter, size of grain, granular 

distance, etc.) and “ .l ” is an external characteristic 

length of the system (wavelength, crack length, size 

or dimensions of sample, etc.) Therefore the non-

local modulus can be written in the following form;  
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Where  E  and v   are the elastic modulus and 

poisson’s ratio respectively.  The difference 

between the classical and nonlocal elastic theory lies 

un the materials constitutive relation  (2)
 
where 0e a 

is a constant corresponding to the material’s and has 

to be determined for each materials independently 

and “ 'X X ” is the Euclidian distance. Then, the 

integro-partial differential (2) of non-local elasticity 
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can be simplifies to partial differential equation as 

follows 

    )()()()1( 222 XeCXXl klijkl
c

ijij            (6) 

where 
ijklC  is the elastic modulus tensor of classical 

isotropic elasticity and 
ije is the strain tensor.  

Where 2  denotes the second-order spatial gradient 

applied on the stress tensor 
,ij i and ./ laeo

Eringen proposed 39.0oe  by the matching of the 

dispersion curves via non-local theory for place 

wave and Born-Karman model of lattice dynamics 

at the end of the Brillouin zone ),( ka  where a  is 

the distance between atoms is  and k is the wave 

number in the phonon analysis.  On the order hand 

Eringen proposed 31.0oe in his study for Rayleigh 

surface wave via non-local continuum mechanics 

and lattice dynamics. 

2.2 Formulation of SWCNT with nonlocal 

relations 

The partial differential equation which governs of 

free vibration of the nanotube under the influence of 

thermal can be expressed as  [27-28] 

 
        Fig. 1.  Geometry of the problem. 
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                     (7)  

where  ( )f X
 
is the interaction pressure per unit 

axial length between the nanotube and the 

surrounding elastic medium.
 A  

is the cross 

section of CNT. The resultant shear force Q  on 

the cross section of the nanotube is defined in the 

following equilibrium equation  

                 X

M
Q




                                           (8) 

tN  denotes the temperature dependent axial force 

with thermal expansion coefficient . This constant 

force is defined as [26] 

                  TEAN xT                                (9) 

   where A  is the cross section of nanotube and  T  is 

the temperature change . The longitudinal magnetic 

flux due to Lorentz force exerted on the tube in z  

direction is represented by the term )(xq  and is read 

from [27]  

                    ,.)(
2

2
2

X

Y
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


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     where  xH  is the  magnetic field strength and 
 

is the magnetic permeability. For the Euler –beam 

theory  the resultant bending moment M in (8) can 

be taken as follows 

                   

,dAzM XX

A

                            (11) 

     where XX is the nonlocal axial stress defined by 

nonlocal continuum theory. The constitutive  (6) of 

a homogeneous isotropic elastic solid in non local 

form for one-dimensional nanotube is taken as 
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where E  is the Young’s modulus of the tube , XX is 

the axial strain,  ae0  is a nonlocal parameter which 

represents the impact of nonlocal scale effect on the 

structure.  a  is an internal characteristic length. The 

nonlocal relations in (12) can be written with 

temperature environment as follows 
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In the context of Bernoulli –Euler model, the 

axial strain xx for small deflection is defined as [28]
   

                 
2

2

X

Y
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


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     where Y  is  the  transverse co-ordinate  in the 

positive direction of deflection. By using (13) and 

(14), in (11), the bending moment M   can be 

expressed in terms of generalized displacement as; 
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     where
2

A

I z dA   is the moment of inertia. By 

substituting  (7) and (8) into  (15), the nonlocal 

bending moment M  and shear force Q  can be 

expressed as follows 
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(17)                     

     For the transverse vibration, the equation of 

motion

 

(7) can be expressed under distributed 

pressure and thermal interaction with surrounding 

polymer elastic medium as
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The pressure per unit length acting on the surface of 

the tube due to the surrounding elastic medium can 

be described by a Winkler type model [22]   

                    
( )f X k Y                                  (19) 

where the negative sign indicated that the pressure 

f is opposite to the deflection of the tube, and k  is 

the spring constant of the surrounding polymer 

matrix. It is noted that the spring constant k  is 

proportional to the young’s modulus of the 

surrounding elastic medium mE  [30] and is given by 

the following relations 
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  where, mE , nE ,  are  respectively, express young 

modulus and thermal expansion coefficients of 

CNTs and polymer matrix, under temperature 

change environments, which is defined  as 
0 (1 0.0005 )nE E T 

 
0 (1 0.0002 )T    and 

)0003.01(
0

TEE mm                                          (21) 

     where 
0E and

0  represents the modulus and 

thermal expansion of CNTs under room temperature 

environment. From the above relations, we can 

write the spring constant of the polymer matrix as 

follows
  

         

)0003.01(0 Tkk                      (22) 
                                       

     

where 
0

mE  and 0k  are the  Young modulus and 

spring constant of polymer matrix under a room 

temperature environment , respectively. Introduction 

of (20) into (19) yields the following non local 

Euler-Bernoulli relation 
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3   Ultrasonic Wave Dispersion 

      In order to analysis the elastic wave charectertic 

of SWCNT, a harmonic wave solution for the 

displacement ( , )Y X t  is taken from [26] in the 

complex form as follows  
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where  Y  is the amplitude of the wave motion , 

1j   , nk  is the wave number, n is the circular 

frequency of the nth sampling point and  N  is the 

Nyquist frequency.  The sampling rate and the 

number of sampling points should be sufficiently 

large to have relatively good resolution of both high 

and low frequencies respectively. Substitution of 

(24) into (23), we get the following coupled 

equations  
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The above equation must full filled for each values 

for small n and can be written in the following with 

single variable X. (25)   can be reduced as  
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  The following non dimensional parameters are 

used for the convenience of the problem             
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Using  (27)in  (26), we obtain the following relation 

with dimensionless form 

 

2

24
2 2

4

2

(1 )1
0

2

xt i

x i

yN H e k

xy mH e
x

y
v m A A

x

 

   





 

   



 



   
   
        
  
 

 
 
   (28)    

     For the spectrum relation the following term is 

considered 
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Substituting  (29) into (28), the following equation 

is obtained for non-trivial solution of the wave 

amplitude y
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     which represents the characteristic equation for  a 

continuum structure (ECS) coupled with 

surrounding medium of an SWCNT.  From  (30), 

we can derive the wave numbers in the following 

form 
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      It is clear that the above wave numbers  relation 

are  a function of the nonlocal scaling parameter, 

wave frequency, longitudinal magnetic field 

strength, stiffness of elastic medium and other 

material parameters of the nano tube. Among the 

four wave numbers two are real and the other two 

are imaginary. The real and imaginary parts 

represent the propagating and damped modes, 

respectively. From (31), if 0k  , the spatially 

damped mode turns to be propagating nature. The 

resonant frequency of n the order of the SWCNT 

with thermal effect can be obtained via nonlocal 

model by   
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The vibration modes  of wave speed or phase speed 

is calculated from 
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     The phase speed is defined with respect to real nk

, since the real part represents the propagative 

component of the wave.  As a result, the speeds 

change with frequencies, which makes the wave 

highly dispersive. The dispersion curve between 

wave velocity and wave frequency will explain the 

entire description of the wave propagation in 

nanostructures. The wave number is mainly function 

of the nonlocal scaling parameter )( 0ae  and the 

wave circular frequency.  The corresponding group 

velocity 



















n

n
g

k
C


Re  are derived from the 

relation given in Eq.(33).  

4 Boundary Conditions  
Here, an analytical solution of the governing 

equations for vibration of a polymer elastic Nano 

beam having simply-supported (S) and clamped (C) 

boundary conditions is presented which they are 

given as: 

 

4.1 Simply Supported SWCNT  

 
        The boundary conditions for the simply 

supported problem are 

 

      ,0|)( 0XxY        ,0|)( 0
''  XYXM  

    ,0|)( LXxY             ,0|)( ''  LXYXM  

4.2 Clamped - Clamped SWCNT 

Assume the case where both the ends of the beam 

are clamped and are subjected to axial compressive 
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load .  The boundary conditions for this case are 

given as  

         ,0|)( 0XxY       ,0|
)(

0



X

X

XY
 

         ,0|)( LXxY       ,0|
)(





LX

X

XY

 

5  Numerical Results And Discussion  

   In this paper thermo magneto elastic wave in a 

single walled carbon nanotube resting on polymer 

matrix is discussed using nonlocal Euler beam 

theory.  From  [31], we considered the Young 

modulus E=1 Tpa, thickness to be 0.35 nm and mass 

density as 2.3 g/cm3.  To analyze the influence of 

velocity on the vibration of SWCNT, while the mass 

density of CNTs is 3/2300 mkg  with the bending 

rigidity EI  of   
925101122.1 mN . According to the 

calculation, The thermal expansion coefficient in 

room temperature is taken as 0 6 11.5 10 C      

[22]. 

      The dispersion curves are drawn in Fig. 2 and 3 

for the variation of wave frequency versus the wave 

number of the elastic SWCNT for the varying non 

local parameter with respect to thermal parameter 

5.0,2.0tN  and spring constant of polymer matrix

0,0.2k  , respectively. From Fig. 2 and 3, it is 

observed that the wave frequency is increasing with 

respect to its wave number for the different values 

of non-local parameters. Figure.3 reveals dispersion 

trend in the wave propagation due to the surrounded 

polymer matrix support.  It can be noted that the 

increasing values of thermal parameter tN also 

influence the values of wave frequency in  Fig. 2 

and 3. A comparative illustration is made between 

the group velocity and wave number of the SWCNT 

for the thermal and spring  constant values is 

respectively shown in the Figs.4 and 5. From the 

Figs.4 and 5, it is clear that, at the lower range of 

wave number the group velocity  attain maximum 

value   in both cases of 0k   and 0.2k  . 

      Fig. 6 and 7 investigates the dispersion curves 

for the phase velocity of thermo elastic SWCNT 

with respect to thermal parameter 5.0,2.0tN  and 

spring constant of polymer matrix 0,0.2k   and for 

the varying non local parameter.  From the Fig. 6 

and 7, it is observed that the phase velocity reaches 

higher values at lower wave number for the 

increasing values of thermal, polymer matrix value 

and nonlocal parameters. The crossings over trend 

of the dispersion curves explains that the energy 

exchange among the vibrational modes when the 

polymer matrix support is absent. The 3D curves in 

Fig. 8 and 9, clarify the relative variation of   wave 

frequency against the constant values of temperature  

and non local constant in the presence of magnetic 

field strength. These curves explain the dependence 

of wave frequency on the non local scale values, 

magnetic field strength and temperature.  Tables 1 

show the different geometrical parameters from the 

literature. Table 2 exhibit the numerical results of 

the natural frequencies for different stiffness 

parameter and non local scale values. From these 

tables it is observed that the frequencies are 

increasing when the non local scale values increases 

.The result also show that as the foundation stiffness 

increases the effect of non local scale values 

diminishes. The same natural frequency is obtained 

for both local and nonlocal boundaries in 

Table.3.These results show that for both local and 

nonlocal boundary conditions the amplitude of the 

natural frequency at different stiffness and nonlocal 

values are same. The natural frequency of simply 

supported and clamped CNT is calculated at 

different thermal parameter and nonlocal values in 

Table.4.From these results it is observed that as the 

thermal parameter grows the frequency also 

increases but the small scale effects reduces the 

values of frequency in both boundary conditions. 

Table. 5 presents the comparative study between the 

numerical results of the natural frequency of simply 

supported CNT at different half wave and non local 

parameter. Results predicts the reasonable 

agreement with the literature.  

Table 1  Parameters of the materials 

Table 2 Natural frequency(THz)  of a simply 

supported -clamped CNT for different non local 

parameters. 

            
3170 /10 mNK               

3190 /10 mNK   

n     5.0 ae
  0 1.0e a 

    0 1.5e a   
0 .5e a 

 0 1.0e a     
0 1.5e a   

 

1       0.3813      0.7706         0.7916     0.5574     0.0886       0.0887 
2       0.5719      0.8238         0.9141     0.5959     0.1776       0.2986 

3       0.7626      0.8738         1.0220     0.6321     0.2663       0.3649 

Properties         Value  Units 

EI
                          

25101122.1 
                 

9mN  

0                         
6105.1   

                    
1C

 
                                3.2

                         
3/ cmg  

0e                               31.0
                            

nm
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4       0.9211      0.9532         1.1195     0.6663     0.3551       0.4214 

5       0.9660      1.1439         1.2092     0.6988     0.4439       0.4511 
6       1.0090      1.3345         1.2927     0.7299     0.5327       0.5361 

7       1.0502      1.5252         1.3711     0.7597     0.6215       0.6321 

8       1.0898      1.7188         1.4453     0.8243     0.7102       0.7199 
9       1.1281      1.9064         1.6479     0.9184     0.7990       0.8160 

10     1.1651      2.0971         2.0945     1.0104     1.0643      1.0654 

Table 3 Natural frequency (THz) of a simply 

supported –clamped  CNT in both local and 

nonlocal boundary 

     
0 17 310 /K N m

         
0 18 310 /K N m          0 19 310 /K N m   

 

      ..BCL  BCNL.     ..BCL   BCNL.      ..BCL   BCNL.

 
0      0.0106     0.0103        0.0113   0.0110           0.0123     0.0120 

.5     0.0148     0.0145        0.0173   0.0171           0.0129     0.0126 
1      0.0198     0.0196        0.0214   0.0212           0.0237     0.0236 

1.5   0.0216     0.0214        0.0450   0.0448           0.0274     0.0273 

Table 5 Comparison of the obtained natural 

frequencies of a simply supported CNT with [37] at 

different circumferential half waves and nonlocal 

parameters  

n         )(0 nm         )(1.0 nm               
)(2.0 nm  

       Ref.[33]    Author     Ref.[33]     Author    Ref.[33]     Author                                                 

   

 2      1.4792      1.4781        1.5765      1.5722      1.8377        1.8312                                        

 3      0.5331      0.5215        0.5977      0.5944      0.7800        0.7723 
 4      0.2728      0.2707        0.3390      0.3368      0.4861        0.4849 

 5      0.1687      0.1665        0.2294      0.2270      0.3538        0.3526 

 6      0.1150      0.1149        0.1715      0.1704      0.2792        0.2774 
 7      0.0835      0.0832        0.1364      0.1347      0.2313        0.2313 

 8      0.0635      0.0629        0.1132      0.1109      0.1978        0.1902 

 9      0.0499      0.4445        0.0967      0.0951      0.1731        0.1704 
 10    0.0403      0.0366        0.0845      0.0823      0.1540        0.1512 

Table 4  Natural frequency(THz) of  a simply 

supported – clamped CNT in both local and 

nonlocal boundary 

         

160 105.1  C
 

160 105.1  C
 

160 105.1  C      

 

       ..BCL   BCNL.   ..BCL    BCNL.      ..BCL    BCNL.  

0         0.0180    0.0178       0.0176       0.0173        0.0256      0.0259 

0.5      0.0145    0.0142       0.0169       0.0167        0.0231      0.0229 

1         0.0134    0.0131       0.0150       0.0148        0.0212      0.0214 

1.5      0.0039    0.0027       0.0116       0.0113        0.0207      0.0205 

. 

 

Fig. 2 Distribution of wave frequency versus 

wave number with 0.2tN  , 0k  . 

 

Fig. 3 Distribution of wave frequency versus 

wave number with 0.5tN  , 0.2k   

 

Fig.4  Distribution of group velocity versus wave 

number with 0.5, 0tN k   
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Fig. 5 Distribution of group velocity versus 

wave number with 0.5, 0.2tN k   

 

Fig. 6 Distribution of phase velocity versus wave 

number with 0.2, 0.2tN k   

 

Fig. 7  Distribution of phase velocity versus wave 

number with 0.5, 0tN k   

 

Fig. 8 3 D Distribution of wave frequency with 

non local constant   and temperature via 0.5xH 

.  

Fig. 9 3 D Distribution of wave frequency via 

temperature and non local values with 
1.0xH   

6 Conclusions 

     This paper presents the study of non local 

thermo elastic waves in a single walled carbon 

nanotube embedded on polymer matrix with the 

longitudinal magnetic effect. The analytical 

formulation is developed based on Eringen’s non-

local elasticity theory. The governing equations that 

contains partial differential equations for single 

walled carbon nanotube is derived by considering 

thermal and Lorenz magnetic force. The computed 

non dimensional wave frequency, phase velocity 

and group velocity are presented in the form of 

dispersion curves. 

 It is found that the non local scaling 

constant enhances the wave frequency and 

reduces the phase and group velocities in 

the presence temperature fields. 
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 Further it is observed that the increase in 

the spring constant value of polymer matrix 

influences the variation of physical 

variables under the temperature change 

environment.  

 The result also show that as the foundation 

stiffness increases the effect of non local 

scale values diminishes via room 

temperature environment 

 It is noticed that the wave frequency decay 

in the presence of temperature via magnetic 

and non local values. 

 It is observed that the natural frequency is 

arrived below 1% in both local and non 

local boundary conditions in the presence 

of stiffness and temperature coefficients.  

 The results presented in this study can 

provide mechanism for the study and 

design of the nano devices like component 

of nano oscillators, micro wave absorbing, 

nano-electron technology and nano–

electro– magneto–mechanical systems 

(NEMMS) that make use of the wave 

propagation properties of single-walled 

carbon nanotubes embedded on polymer 

matrix.  
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