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Abstract:- An axisymmetric problem of a microelongated thermoelastic medium by considering an infinite
circular plate under the influence of thermomechanical sources has been solved by employing the eigenvalue
approach. The solution in the form of the components of displacement, stresses and temperature distribution is
obtained in the transformed domain by using the Laplace and the Hankel transforms. A numerical inversion
technique has been used to get the results in the physical domain, numerically, for a particular model. The
results are presented graphically to show the effect of microelongation on various field components. The

results are discussed graphically.
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1 Introduction

The theories for the microcontinuum or the
micromorphic continuum fields were introduced
by A. C. Eringen and these differ from classical
(linear and non-linear) field theories by the fact
that each material particle is endowed with
additional degrees of freedom. That means, in
contrast to classical continuum mechanics (rational
mechanics), where the motion (macromotion) of a
material particle is fully described by a vector
function called deformation function,
micromorphic material particles undergo an
additional micromotion, corresponding to the
rotation and deformation of the material particle at
the microscale. In the most general case of
micromorphic continua, there are nine additional
degrees of freedom (three for microrotation and
six for microdeformation). In principle,
micromorphic continua are almost universal but,
due to its complexity, the practical usefulness of
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this theory is
generality.

A special case is that of microstretch continua.
Here, the isotropic expansion or contraction of the
material particle is permitted in addition to
rotation. Shearing motions are not allowed in
microstretch continua. That means the particles of
microstretch materials have seven degrees of
freedom, three for displacements, three for
microrotations and one for microstretch.
Microstretch theory adequately model the bubbly
liquids. A more special is the theory of micropolar
continua, in which only the microrotations of
material particles, described by three degrees of
freedom, are allowed in micropolar continua in
addition to the motion at macroscale. The theory
of microstretch elastic bodies or Micropolar theory
of elasticity with stretch is a generalization of the
micropolar theory of elasticity for which the
theory was given by Eringen [1]. Eringen [2] also

inversely proportional to its
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developed the theory of thermomicrostretch elastic
solids.

A microelongated elastic solid possesses four
degrees of freedom, three for translation and one
for microelongation. In microelongation theory,
the material particles can perform volumetric
microelongation in  addition to classical
deformation of the medium. The material particles
of such medium have a tendency to contract and
stretch independently of their translations.
Composite materials reinforced with chopped
elastic fibers, solid-liquid crystals, porous media
with pores filled with nonviscous fluid or gas can
be categorized as a microelongated medium.

Kiris and Inan [3] found the Eshelby tensors for
a spherical inclusion in a microelongated elastic
field and they introduced a special micromorphic
model to describe the damaged material that
defines the damage as the deformation and the
growth of microvoids and microcracks occurred in
the material at the microstructural level. Shaw and
Mukhopadhyay [4] investigated a functionally
graded isotropic unbounded microelongated solid
under periodically varying heat sources using
Laplace-Fourier transform techniques. Shaw and
Mukhopadhyay [5] investigated the influence of
moving heat source in a thermoelastic
microelongated solid in the context of the
generalized theory of heat conduction. Ailawalia,
Sachdeva and Pathania [6] studied a two
dimensional  deformation problem in a
thermoelastic ~ microelongated medium  with
internal heat source.

In this paper, a two dimensional problem of an
infinite microelongated thermoelastic circular plate
is solved by using the eigenvalue approach
following the Laplace and Hankel transforms.
Using the numerical inversion technique of
integral transforms, the results are obtained in the
physical domain, numerically for a particular
model. The effect of microelongation on
displacements, temperature distribution, normal
stress and tangential stress are presented
graphically to discuss the results and to make the
conclusions.

2 Basic Equations

Following Eringen [7], Lord-Shulman [8] and
Green-Lindsay [9], the basic equations and the
constitutive relations for a linear microelongated
thermoelastic solid are given as
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where U is the displacement vector and i is the
microelongation scalar; A, u, ag, Ag, A4, jo, m are
the material constants, p is the density, K; is the
coefficient of thermal conductivity, v =
(BA+2wa;, ap is the coefficient of linear
thermal expansion, T is the change in temperature
of the medium at any time, C* is the specific heat
at constant strain; 7, and t; are the thermal
relaxation times; t;; is the stress tensor; §;; is the
kroneckor delta and V is the Laplacian operator.
For L-S theory; 7, =0, 79 > 0,and g = 1.

For G-L theory; 7, = 79 > 0, and ng = 0.

3 Formulation of the Problem

We consider an infinite homogeneous isotropic
microelongated thermoelastic circular plate having
thickness 2d. A transient axisymmetric
temperature field and an instantaneous normal ring
force are acted upon the plate. Also, the plate is
considered as thermally insulated. The cylindrical
polar coordinates (r, 6, z) having origin in the
middle surface of the plate and z-axis along the
normal to the plate, i.e., along the thickness of the
plate are taken. The problem considered is a two
dimensional axisymmetric problem with z-axis as
the axis of symmetry. The plane (r, z) is taken as
the plane of incidence and all the components
depend upon 71,z and t only. The initial
temperature in the thick plate is taken as a constant
temperature T
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Now, we define the Laplace transform with respect
to time variable ‘t’ with transformed variable ‘s’
as

f(r,z,5) = L{f(r,2,0)}

= foof(r, z,t)e Stdt, (15)
0

and the Hankel transform of order n with respect
to the variable ‘r’ with transformed variable ‘¢’ as

ﬁl(frzrs) = Hn{f(r, Z, S)}
= f mrf(r.z.s)]n(s‘r)dr. (16)
0

Applying the Laplace and then the Hankel
transforms defined by (15) and (16) on the set of
equations (11)-(14), we obtain

Uy = ayify + ags + ag,T + bipuy,  (17)
Uy = ag,il, + b21£; +byst) + by T, (18)
Y’ = a3l + azaP + azaT + byyu;,  (19)
T = agily + Qgs + aguT + bypuy,  (20)
where

§2 + 52 Pos
a1 = (6—2>' a3 = 52"

$
A4 = _ﬁ(l + T]_S), azz = (6262 + 52),

as, = podié, azs = (2 + 855% 4 p167),

a34_ - _176;_<(1 + Tls)' a4—1 = 66(5 + 7’]0‘[052),
a43 = Ve(s + ny152),

agq = (62 4+ Q*(s + 195%),

_§a-6%)

62 b21 = _5(1 - 62)7
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by3 = —py, bys = (1 +145),

b3, = pobi, by = €(s + 1oTes?).

The system of equations (17)-(20) may be written
as

d
EW({,Z,S) =AW, z5),  (21)

where
U 10 1
W__Du]' ‘4_[A2 Al
-ﬁr
) d
U = ,,Z’ D =—,
P dz
LT
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o—0000 _lo1oo0
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0000 0001
a, 0 ai; 4y
0 a 0 0
A = 2
a; 0 Q33 dy
a, 0 Ay Ay
0 b, 0 0
A_bZI by by,
| =

0 0 0

0 b, 0 0
The solution of the equation (21) is assumed as
W, zs)=X(&, s)e, (22)
so that, we have

A, WS, z,5) = qW (5, 2,9),

which leads to the eigenvalue problem, and the
characteristic equation of the problem is obtained
as

|A—ql| =0,

which on simplification, by using row and column
operations, yields

q® —219° + A2q* — 239> + 2, =0, (23)

where

Volume 4, 2019



Rajneesh Kumar et al.

M = aqq + Az + azz + agy +ass

+by3by1 + bazbsy + byybys,

Ay = 41055 — A13A31 + Q11033 + Ay2033
—QA14Q41 — A34043 T Q11044 + Ap2044
+a33a44 + (a3 + a44)b12b21
+(aq1 + a44)by3bsy + (11 + az3)bysby;

—(ai3bz1 + ay3ba4)bs;
—(ayabyy + azabyz)by,
—(az1byz + ag1b4)byz,
A3 = Q13034041 + (14031043
+(a11a33 — A43031) A2 — (A2 + A33)A14041
—(ay; + az)azsa43 + (a11 + az3)az2044
+(a110a33 — A13031) 044
+ (a33044 — 34043)b12by
+ (A34Q41 — A31044)b12b33
+ (a31a43 — a33a41)b12b2y
+ (A14Q43 — A13A44)by1 b3y
+ (a11044 — A14041)b23b3;

+(a13a41 — a11a43)baabs;
+ (a13a34 — A14a33)bz1 by
+ (a14031 — A11034)by3bs;

+(a11a33 — 13a31)b24b43,
Ay = (A13Q34 — A14033) 22041
+(a14a31 — A11034) 22043
+(a11a33 — 413A31)A22044-

The eigenvalues are the roots of the equation (23)
and the roots are say q? (i =1,2,3,4). The
eigenvector X(&,s) corresponding to the
eigenvalue g can be obtained by solving the
system of equations

[A—qllX(§,5) = 0.

Thus, the eigenvectors X;(&,s) corresponding to
different eigenvalues +q; (1,2,3,4) are obtained
as

_ [Xu s
Xi(st) - [Xl;(f;s) )
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where

forq=gq; (i=1,2,3,4), we have

ali)‘h a;qf

. b‘ 3
Xl'l(fr S) = di ) XiZ(fi S) = dlfll )

[Ar3A

€i eiq;

forq=—q; (i=1,2,3,4), we have

—a;q; a;q?
le(fxs) = di ) ij(f,S) = _dllqll )
€ —eq;
j=i+4,
in which
4

a; [ri{p3s; — (1 — 6%)ry}

~ 52
terry{r, — (1 — §2)V28; + 2vpy6;}],

1
b; = ﬁ[ﬁz(rzﬁ - P35ik§2)
+eryry (§2r, + V287 13 — 28{UpeéR)],
d; = 8{[(pory + evry)(§a; + by)q;]
/(=111 — 5‘725IT4);

e; = [e(s + noTos2){(ryry + €V26i1y)
— V61 (pory + €vry)}l(€a; + by)
[ (=1, — 51725fr4)}'

r = (&2 + (s + 1952 — q7),
r, = (§2 + 8552 + 167 — q}),
— q76?),

7 = (1 + 1745)(s + 1oTos?2),
(i=1,2345).

r3 = (&2 + 52

Thus, the solution of (21) is obtained as

4
W(E25) = ) NXi(§,s) cosh(qiz), (24)
i=1

where Ny, N,, N3 and N, are arbitrary constants.
Now, using (5) in equations (4), the stress
components for the two dimensional problem are
obtained as
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du, ou, u,
e = Ot 20242 (S0 +2)
d
-V (1 + 14 E)T + Aoy, (25)
tyy = aur+ Oulz 26

Using the non dimensional quantities defined by
(10) and applying the Laplace and then the Hankel
transform defined by (15) and (16) on the
equations (25)-(26), and then using (24), we get

t,z = L1N; cosh(q,z) + L,N, cosh(q,z)
+L3N;5 cosh(qsz) + LyN, cosh(q,z),(27)
t,r = M;N; cosh(q,z) + M,N, cosh(q,z)

+M3N; cosh(qzz) + MyN, cosh(q,z), (28)

where
Aéa;q; A
Li = [ f lqu —Ozdl - (1 + Tls)ei
pPCy Py

A+2u

uéb;  paiqf
Mi = —_2+ 2
pcy pcy

], (i=1,234).

5 Boundary Conditions

The circular plate occupies the region defined by
0<r<ow and —d <z < d. The plate is acted
upon by an instantaneous normal ring force and a
transient  axisymmetric ~ temperature  field
dependent on the radial and axial directions of the
cylindrical coordinate system. Also, the plate is
thermally insulated. Therefore, the nondimensional
boundary conditions at the surface z = +d of the
plate are taken as

dT
— = +g,F(r,2),

77 (29)

t,, = 0(t)d(a—r), (30)

t, =0, (31D

dy

where F(r,z) = z%e™®", w >0, F(r,z) is a

function that increases in the axial direction
symmetrically and falls off exponentially as one
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moves away from the centre of the plate along the
radial direction. The constant temperature applied
on the boundary is go. 6(—) is the Dirac delta
function.

Applying the Laplace and the Hankel transforms
defined by (15) and (16) on the boundary
conditions (29)-(32), we obtain

aT z?w

E = igo (Zz + w2)3/2’ (33)
bt = aJo($a), (34)
£ =0, (35)
d

— =0 (36)

Making use of (24) and (27)-(28) in the
transformed form of boundary conditions (33)-
(36), we obtain

SiN; + SN, + S3N; + SNy = Q,  (37)
T,N, + T,N, + TsN; + T,N, = R,  (38)
UyN; + U,N, + UsNs + U,N, =0, (39)
VN, + V,N, + VsN; + V,N, =0,  (40)

where

S; = ejq; cosh(q;d),  T; = L;cosh(q;d),

U; = M; cosh(q;d), V; = d;q; cosh(q;d),

72w

Q=4 R =ajy(§a),

_gO (ZZ + w2)3/2 )
(i=1,234).

After solving the system of equations (37) — (40),
we obtain the values of N; (i = 1,2,3,4) as

Ay

N; = 1 (41
where
S1 S 853 S,
|n T
Uy U, Us Ul
Vi V, V3 1,

and A;(i=1,2,3,4) are obtained from A by
replacing i column of A with |Q,R,0,0|*", ('tr’
stands for transpose).

Using the values of N; (i = 1,2, 3,4) from (41) in
the equations (24) and (27) — (28), we obtain the
expressions of displacements, microelongation,
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temperature distribution and stresses in the
transformed domain as
(%, i, P, T)
4
1
= 2D @0y, by di, e)A;cosh(giz), (42)
i=1
(trz tar)
1
:KE(LI:J M;)A; cosh(q;z) . (43)
i=1

The above expressions (42) — (43) provide the
solution of the problem in the transformed form of
components of displacement, microelongation,
temperature distribution and stresses.

6 Particular Case
In case of absence of microelongation, that means
the circular plate is of thermoelastic medium, then

the boundary conditions for the problem become,

dr
- =4
e +90F(r,2),

tyz = 6(t)s(a—r),
= 0.

tar

Accordingly, the expressions for displacements,
temperature distribution and stresses are obtained
from (42) and (43) as

3
_ 1
(21,01, T) =K2(aiQi: b;, e;)A;cosh(q;z),
=1

3
— 1
( tzz: tzr) = KZ(LL': Mi)Ai COSh(QiZ) )
i=1

where
A1 = (RS3 — QT3)U; + (QT, — RS;)Us,
A; = (QT; — RS3)U; + (RS; — QTp)Us,
Az = (RS; — QT,)U; + (QTy — RSy)U,,

A = (S;T3 —S3T)Uy + (S3Ty — S$1T3)U,
+ (5. T, — S;T)Us,
and
S; = e;q; cosh(q;d), T; = L; cosh(q;d),

V; = d;q; cosh(q;d),
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Li=

Aéa;q; A+2u
12 L+ 718)e; + | ——=— | biq;i|,
pcy pcy

U .
M; = — (aiqi2 — fbl-), (i=1,273).
Pcy

7 Inversion of Transforms
The transformed displacement, microelongation,
temperature distribution and stresses are the
functions of the form f(&,z,s). Therefore, to get
the solution in physical domain, we have to obtain
the function, f(r,z,t). So, we first invert the
Hankel transform by using
fras) = | @ nsmenas. @

0
Press et. al. [10] described the method for
evaluating the integral by using the Romberg’s
integration with adaptive step size. This method
uses the results from successive refinements of the
extended  trapezoidal rule followed by
extrapolation of the results to the limit when the
step size tends to zero.

The expression (44) provides the Laplace
transform £ (¢, z, s) of the function, f(r, z,t). Now
the function f(r,zs) can be considered as the
Laplace transform g(s) of some function g(t), for
the fixed values of r and z. The Laplace transform
g(s) can be inverted by using the inversion
technique given by Honig and Hirdes [11] by
taking the inverse Laplace transform as

1 C+lo o
90 =5 a@estds (45)
where c is an arbitrary constant and is greater than
all the real parts of the singularities of g(s).

8 Numerical Results and Discussion
To illustrate the problem considered and solved
above theoretically in the transformed domain,
here we take the numerical parameters for a model
of microelongated thermoelastic medium to get the
solution of the problem in physical domain,
numerically by using the inversion technique
described above. The physical parameters for the
model considered are given as under:-

Following Eringen [12], the values of micropolar
constants are taken as

A=94x10"Nm™2, u=4.0x10""Nm?,

p=174%x103Kgm™3,
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and the Microstretch parameters are given by
jo =0.19 x 10 Nm™2,
ay = 0.779 x 10~°N,

Ao = 0.5x101°Nm=2, 1, =6.5%x10Nm™2.
The values of thermal parameters are given by
Dhaliwal and Singh [13] as

K =17x10%/m s 1K1,
C*=1.04x103/Kg 1K1,
a; =233 x 107°K 1,

7o = 6.131 x 107 13sec,

7, = 8.765 x 10~ 3sec,

m = 1.13849 x 101°N/m?,
T, = 0.298 X 103K,

Taking the above parameters into consideration
and using a computer program for the numerical
inversion of the integral transforms in MATLAB,
we draw the variations of displacements, normal
stress, tangential stress and temperature
distribution with radial distance ‘r’, for the middle
surface of the plate and for t = 0.01, and are
shown in figures (1)-(5), respectively for the cases
of microelongated thermoelastic medium (MTM)
and thermoelastic medium (TM). To notice the
variations for the two cases in the same figure, the
figures are shown by multiplying the field
components by some constant factors as per
requirements in different figures for the different
cases and are mentioned accordingly for each
figure, as the magnitude values for some field
components are very large/small in comparison to
others. In all these figures, the cases of MTM and
TM correspond to the solid line ( ) and dashed
line (- ---- ), respectively.

Fig. 1 depicts the wvariation of radial
displacement wu, with radial distance r. The
variations are drawn after multiplying the values
for the case MTM by 10* and for the case TM by
102 to notice the variations. It is noticed that in
both the cases, i.e., MTM and TM, the magnitude
values of radial displacement are large initially,
i.e., near the origin, which goes on decreasing with
the increase in the value of r and ultimately tends
to zero with further increase in the value of r,
following the oscillatory pattern.
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Radial displacement (u, )

Radial distance (r)
Fig. 1 Variations of radial displacement u,

Also, the radial displacement vanishes for large
values of 1, i.e., at a far away distance from the
point of application of the source for both the
cases. Also, the curves for the cases MTM and TM
show the impact of the microelongation, and it is
seen that this impact is mainly on the magnitude
values of radial displacement and the magnitude
values are large if the microelongation factor is not
taken into consideration.

D

Normal displacement (u

Radal disane (1)
Fig. 2 Variations of normal displacement u,

Fig. 2 describes the variation of normal
displacement u, with radial distance r. The
variations are drawn after multiplying the values
for the case MTM by 10° and for the case TM by
107 to notice the variations. It is noticed that in
both the cases, i.e., MTM and TM, the magnitude
values of normal displacement tend to zero values
with increase in the value of r, following the
oscillatory pattern. Also, the curves for the cases
MTM and TM show that the magnitude values of

normal  displacement are large if the
microelongation factor is not taken into
consideration.
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nal stress  (t

Radal disance (r)

Fig. 3 Variations of normal stress t,,

Shear stress (t_ )

Rl
0

Radal distance (r)

Fig. 4 Variations of shear stress t,,

Fig. 3 exhibits the variation of normal stress t,,
with radial distance r. The variations are drawn
after multiplying the values for the case TM by 10
% to notice the variations. It is noticed that the
magnitude values of normal stress tend to zero
values with increase in the value of r, following
the oscillatory pattern for both the cases, i.e.,
MTM and TM. Also, the curves for the cases
MTM and TM show that the magnitude values of
normal stress are large for the case of TM as
compared to MTM, i.e., the microelongation factor
decreases the magnitude values of normal stress.
Similar trends are observed for the variation of
shear stress t,, with radial distance r from fig. 4.
However, the wvariations are drawn after
multiplying the values for the case TM by 107 to
notice the variations.
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«TH

Temperature distribution

Radial distance (r)

Fig. 5 Variations of temperature distribution T

Fig. 5 gives the wvariation of temperature
distribution T with radial distance r for the cases
MTM and TM. The variations are drawn after
multiplying the values for the case MTM by 10*
and for the case TM again byl0* to notice the
variations. It is noticed that the magnitude values
of temperature distribution tend to zero values
with increase in the value of r, following the
oscillatory pattern for both the cases, i.e., MTM
and TM. Also, the curves for the cases MTM and
TM show that the magnitude values of temperature
distribution are comparable, ie., the
microelongation factor has not much impact on the
temperature distribution.

9 Conclusion

An axisymmetric problem of an infinite circular
plate of microelongated thermoelastic medium
acted upon by thermomechanical sources is solved
and the impact of microelongation is analysed
graphically. It is seen that in all the cases the
values for various components are large initially
and the variation curves follow the oscillatory
pattern to tend to zero value, which show the
characteristic of the source applied as the impact
of the source become negligible, if we move away
from the point of application of the source.
Further, there is a large variation in the magnitude
values of the various components due to
microelongation factor except in case of
temperature distribution. This analysis shows the
properties of the medium considered. The problem
discussed will be useful for the researchers in the
field of continuum mechanics and related fields for
further studies and research.
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