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Abstract: Transmission of rational, vertical or horizontal forces to plates in case of elastic foundations is a 
frequently recurring in many engineering structures. In general it is often difficult to find suitable nodal loading 
models for plates on elastic foundation problems. In this study, it is proposed to extend an application of finite 
elements (FEM) for derivation nodal loads to provide solution of plates resting on Winkler foundation. The 
derivations of the governing differential equations and exact shape functions extended to the nodal load 
modeling for solving plate bending  problems. 
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1 Introduction 
In many cases assessment of vertical or horizontal 
forces to transmit foundations is a frequent problem 
of design in structural engineering.  In order to 
include behaviour of foundation properly it is 
necessary to represent mathematical formulation of 
external loads acting on plates with some simple 
assumptions. Winkler model is one of the well 
known useful simplified model assumes the 
foundation behaves elastically, and vertical 
displacement and pressure underneath foundation 
are linearly proportional to the external loads with 
assumptions of supporting medium is isotropic, 
homogeneous and linearly elastic for small 
deflections. There are many two parameter 
foundation models based on Winkler model with 
more sophisticated proper mathematical 
formulations [1-3]. The procedure incorporating the 
finite strip method together with spring systems 
proposed for treating plates on elastic supports is a 
convenience in solution of plate problems as a 

numerical method have attracted much attention [4-
7]. The problem can be simplified as to use a grilage 
of beam elements to define continuous plates. The 
governing equation for transverse displacement of 
plates subjected to lateral loads is given in Eqn 1.  
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Rrepresenting the soil response underneath plates by 
Winkler parameter the governing equation for 
transverse displacement of plates subjected to lateral 
loads. The equation can be rearranged for plates 
resting for Winkler foundation by using two-
dimensional Laplacian operator in Eqn 2 as follows: 

),(22 yxqkwwD =+∇∇    (2) 

where k is the Winkler parameter with the unit of 
force per unit area/per unit length (force/length3) 
and D is the flexural rigidity of the plate element. 
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This equation is applicable to all types of 
rectangular plates including Winkler foundation 
problems for bending. In many cases classical 
methods that provide mathematically exact solutions 
of plate problems are available for a limited number 
of load and boundary conditions [8]. There are a few 
load and boundary conditions that permit Equation 2 
to be solved exactly. Therefore approximate and 
numerical methods have a great importance to solve 
the governing differential equations of plates resting 
on one-parameter elastic foundation for transverse 
displacement. Some numerical and approximate 
methods, such as finite element, finite difference, 
boundary element and framework methods have 
been developed to overcome such problems [9-12].  
 
 
2 Formulations of the problem 

The objective of the present study is to present a 
numerical solution for plates on Winkler 
foundations. In this form, plates are idealized as a 
grillage of beams of a given geometry satisfying 
given boundary conditions. The Shape functions and 
stiffness matrices of a beam element on Winkler 
foundation can be derived to obtain nodal loads forl 
plate bending problems. A representation of the 
foundation with closely linear translational springs 
underlying a beam element can be considered 
instead of plate elements. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 1. The idealized discrete system as parallel sets 
of one-dimensional elements replaced by the 
continuous surface.  

 For particular plate problems, closed form 
solutions have been obtained for Equation 2. The 
properties of beam elements that resembles that of 
plates resting on Winkler foundations will be a very 
useful tool to solve such complicate problems. 
However, the equation of the elastic curve derived 
for a beam element from the equilibrium equations 
of an infinitesimal segment of the structural member 
is given in Eqn 3. 
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For different types of loading and boundary 
conditions it is possible to extend the exact solution 
of Equation 3 for a beam element supported on a 
two-parameter elastic foundation to plates on 
generalized foundations when the plate is 
represented by a discrete number of intersecting 
beams. Then finite element based matrix methods 
will be used to determine the exact shape, fixed end 
forces and stiffness matrices of beam elements 
resting on elastic foundations. These individual 
element matrices will be used to form the system 
load and stiffness matrices for plates. 
 
3 Derivation of equivalent nodal loads 
  

For equivalent nodal force vectors firstly it is 
necessary to derive shape functions for beam 
elements. By equating )(xq =0; the homogeneous 
form of Equation 3 the shape functions obtained and 
the necessary evaluations as previously done [13] 
the s functions for one dimensional elements resting 
on Winkler foundation can be derived.  
 The bending shape functions are directly affected 
by the foundation parameter. It is possible to define 
them in non-dimensional forms for comparing the 
functions with the corresponding Hermitian 
polynomials.  

L
x

=ξ   for Lx ≤≤0  (4) 

and 

4 1

4
L

EI
kLp == λ    (5) 

where L is the length of the beam. Note that 
both p and ξ are non-dimensional quantities. 
Since the torsional shape functions are not 
affected, then only the non-dimensional forms 
of the bending shape functions will be 
considered as follows; 
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The shape functions [ N ] for beam elements 
resting on one-parameter elastic foundation are the 
main tool for fixed end moments and forces. The 
conventional cases are not valid for beam elements 
resting on elastic foundations as seen in Figure 2.a. 
It is obvious that the foundation reaction will affect 
the fixed end bending moments and forces.  In some 
cases influence of foundation have a great 
importance. The nodal load vector corresponding to 
the loading function, q(x), acting on the span L is 
given by;  

{ } [ ]∫=
L

dxxqNP
0

)(     (7) 

where [ N ] is the shape functions for beam elements 
resting on one-parameter elastic foundation.  
 
For a distributed moment m(x) acting along the 
element as shown in Figure 2.b, the load vector can 
be rewritten as; 
 

{ } [ ]
∫=
L

dxxm
dx
NdP

0

)(     (8) 

The above equations can be used to determine 
the load vectors for many common loading types. In 
this study the plate will be represented by a discrete 
number of intersecting beams. Since beam elements 
can be accepted as infinitesimal elements of plates, 
many types of loading can be represented with 
uniformly distributed loads or point loads applied at 
the nodes. Therefore, the nodal load vector will be 
derived only for ( q(x) = q0 ) uniformly distributed 
loading of the beam elements.    
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Fig 2. Nodal Forces due to Uniform Loading of a 
Beam Element Resting on One-Parameter (Winkler) 
Foundation. 

Referring to Figure 2.a for uniform distributed 
loading, q0, the equivalent nodal loads can be 
obtained by rewriting Equation (7) as; 
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Inserting the corresponding shape functions from 
Equation (6) into Equation (9), the nodal loads 
obtained as; 
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It is obvious that when foundation parameter k1 
tends to zero, the terms in Equations (10.a) and 
(10.b) will reduce to the conventional beam fixed 
end forces obtained by Hermitian functions. The 
well known terms are obtained as; 
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In order to compare the influence of the 

foundation parameter k1 on fixed end forces, the 
normalized terms of Equation (10) with those of 
Equation (11) are portrayed in Figures 3 and Figure 
4. 
 

 
 

Fig 2. Normalized Nodal Force F1 due to 
Continuous Loading of a Beam Element Resting on 
One-Parameter (Winkler) Foundation. 

 

 
 

Fig 4. Normalized Nodal Force M1 due to 
Continuous Loading for a Beam Element Resting on 
One-Parameter (Winkler) Foundation. 

The figures represent behavior of the soil 
underneath one dimensional beam element as a part 
of continuous plate element. The figures indicate 
that the foundation rigidity has a great importance 
on nodal loads as fixed end forces. 
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4 Conclusion 
The exact fixed end forces as work equivalent 
forces and shape functions for one-dimensional 
beam elements resting on one parameter 
foundation are the tools to solve complicate 
plate problems. closed form solutions even for 
conventional plate analysis can only be applied 
to the problems with simple geometry, load and 
boundary conditions. For plates supported 
elastic foundations the solution is usually much 
too complex and there is apparently no 
analytical solution other than for simple cases. 
A combination of finite element method, lattice 
analogy and matrix displacement analysis of 
grid works was used to obtain a finite grid 
solution. In this method the due to the shape 
functions nodal forces derived to solve  the 
conventional beam elements and beam elements 
resting on Winkler foundation are valuable 
tools to solve plate bending problems.  
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