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Abstract: In the paper are shown the rising expectations in the design of mechanical elements generate a need to 
incorporate, in more accurate ways, aspects that were previously solely approximated, or not even taken into 
consideration. Such is the case of the crack fatigue and propagation problems, both relevant when estimating the 
lifespan of a mechanical element that is subject to alternating loads, or that has initial cracks of certain extension. 
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1 Introduction 
In Linear Elastic Fracture Mechanics (LEFM), the 
most used parameter in terms of determining the 
cyclic fatigue life or the unstable nature of a process 
of monotonic loads is the Stress Intensity Factor 
(SIF). Many work studies are dedicated to the 
presentation of this parameter's values in different 
situations and to the specific programs developed in 
order to obtain it both in finite elements and in 
boundary elements. 
However, the majority of such studies focus on cases 
in which the crack lips are almost completely open 
and smooth, respectively with a null crack friction 
coefficient. This case, that can result very relevant 
when it comes to predominant one mode problems or 
in metals, becomes less relevant in mixed mode 
problems, especially in the anisotropic materials and 
composites. Due to the increasing use of this types of 
materials – like concrete, and especially fiber 
composites – this problem becomes one of unique 
importance and of great essence, if we take into 

account (1) the dramatic reduction that the 
consideration of such factors might lead to for the 
stress intensity factor and for the predicted cyclic 
fatigue life, and (2) the possible lack of crack 
propagation in situations in which a simple 
calculation of an open crack factor indicated a crack 
propagation. This is mainly the case of mode II 
cracks with increased friction between the crack lips. 
 

2 Formulation of the beam in 2-nd 
linear elastically multi domain 
problems 
The first equation of the BEM, in its direct 
formulation, is the well-known Somigliana's identity, 
which expresses the displacement vector ui (Q)of a 
point Q of a domain Ω as a function of the 
displacements ui (P) and tractions ti (P) of the 
boundary points of this dominium and the body 
forces Xi 
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where Uik is the Kelvin fundamental solution of the 
Navier’equations, Tik are tractions corresponding to 
those fundamental solution of the Navier’s equations, 
Tikare the tractions corresponding to those 
fundamental solutions (the expresisions for the 
orthopic  case are included in the Appendix), and Cik 
can be expressed as:9 
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Fig.1 Geometrical mean of α1 and α2 

 
where Uik is the fundamental solution of the Navier 
equation, Tik are the tractions corresponding to the 
mentioned fundamental solution, included in the 
Appendix on the orthotropic case, and Cik can be 
expressed asformula(2.for isotropic materials, 
where α1and α2 have the geometrical meaning shown 
in Figure 1, δik is the Kronecker tensor, r the radio 
vector joining the points P and Q, n the outward 
normal to the boundary at point P and v the Poisson 

coefficient [for plane stress, this value must be 

modified by the well-known expression 






1

*  

Under some circumstances, the domain integral in (1) 
can be rewritten as the sum of two boundary 
integrals, in such a way that is possible to express the 
displacement of any point of the domain Ω in terms 
of only boundary integrals. In this work, however, no 
body forces have been considered, hence such 
integral disappears, and the equation (1) is directly 
expressed based on the boundary integral 
function.(fig1) 
If a boundary discretization with Ne elements is used, 
and the displacements and tractions are approximated 
inside each element in terms of nodal values, in the 
standard form of BEM, as (formula (2.3) 
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where Nnj is the number of nodes of the element 

j, and φk the shape function for 2-D continuous 
elements, then the eq(2.1) can be approximated by 

 

 j

Ne

j

Nnj

m
mmijikj

Ne

j Q

Nnj

m
mm

j
iikiik duPQTdtPQUQuC

jj


















     

   


 1 11 1

)().()(),()( (2.4) 

 
With Nnj the number of nodes of element j, and φk the 
interpolation functions for 2-D continuous elements, 

then equation (1) can be approximated by (formula 
2.4) 
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For example, in the case of linear elements (two 
nodes per element), equation (4) can be rewritten as 

(formula 2.5a, 2.5b) 
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If this expression is applied to each of the nodes and 
the corresponding boundary conditions are also 
included, it is possible to compute an algebraic linear 

system with [ )1(2  Nnjj ] equations and 

unknowns, corresponding to the displacements and 
tractions of the boundary nodes. 
If the collocation point is not one of the nodes of the 
element along which the integrals in (5) are 
computed, a standard Gauss-Legendre quadrature is 
used. On the other hand, when it is placed from a 
node inside the adjacent element, singular integrands 
appear in the integrals of (5). In this case, the 
constants B are computed by using a quadrature with 
logarithmic weight function, while the constants A 
are computed, together with the free term Cik, by 
imposing a rigid body condition to the studied body. 
At each node two equations and six unknowns (two 
displacements, and two tractions for each of the 
elements to which the node belongs) can then be 
established. Most of the times, these tractions are 
expressed in local coordinates being necessary to 
transform the traction vector based on these 
coordinates. 
Ultimately, once the coefficient and independent 
term vector matrix is assembled, and the boundary 
conditions are applied, an algebraic system is 
obtained in the form (2.6): 
 
   Kx = f   (2.6) 
 
in which the unknowns, x, correspond to boundary 
displacements and/or tractions. The solution of this 
system is performed by any standard method, 
depending on its size. 
Once the unknown displacements and tractions have 
been obtained, the displacements of any internal 
point are also obtained by (1), while the stresses may 
be computed by applying the stress operator to it. 
Focusing solely on the contact problem formulation 
between to elastic solids, with their interface initially 

in a full contact, and normal for both solids. This is 
the only case of interest for this context. The non-
traction condition for the mentioned point and with 
the data (typology of zone) described in Figure 2 is 
expressed as 

              0Nu              (2.7) 

Where uN  is the projection of relative displacement 
between equivalent points (equal to the post-contact 
position) above normal. 

 
Fig.2 Typology of zone. 

 
The static boundary conditions, in the unilateral case 
proposed in this work and based on the Coulomb's 
Law of Friction like the one used here, can be 
expressed as formula 2.7 
Besides that, the compatibility and equilibrium 
conditions are to be met between the two solids, in 
the points in which contact has been established. For 
this, the following different areas are defined in terms 
of the global boundary of each solid (Figure 2.) 
- No contact area (area no. 1) – the area that shall 
never establish contact 
- Candidate to contact area (area no. 2) – the area that 
still has not established a contact, that might establish 
one at a specific load level. 
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- Slip area (area no. 3) – Nr   

- Adherent area (area no. 4) – Nr   

- Welding area (area no. 5) – the contact area in 
which both solids are considered welded, thus 
recognizing the traction stresses. 
The contact problem between two solids, or better 
said between two domains of one body, as in this 
case, consists therefore in approaching the BEM 
equations to each contact solid, including implicitly 
or explicitly (in this case the second option was 
chosen) the boundary conditions (compatibility and 
equilibrium) in the contact area for each load level, 
as well as the boundary conditions in the other areas 
for each one of the aforementioned solids. 
The program that has been implemented includes 
linear, quadratic and quarter-point-singular-traction 
elements (– 1/2 singularity), all of them with stresses 
and displacement continuity, as long as area no. 1 is 
checked for special nodes (nodes with excess or no 
unknowns), treated in an analogue mode in [2]. In 
case of friction, the friction coefficient is defined 
independently for each element, as it is possible to 
have independent contact areas between two solids 
with different friction coefficients. 
 

3 Equation system structure and 
problem solving 
Given the non-linear character of the contact 
problem, and independent of the solving method 

chosen: incremental, iterative or incremental-
iterative, it is necessary to build and solve several 
times a linear equation system, in order for the major 
execution time would to match this process. 
Therefore, it is very important to choose the 
corresponding algorithm to use in order to reduce this 
time as much as possible. 
When selecting the system's basic unknowns, two 
possibilities arise. The first one is selecting explicitly 
the necessary unknowns, in order for the problem to 
be solved just by merely applying the integral 
equations. In other words, instance, both the 
boundary conditions and the compatibility and 
equilibrium equations in the contact area are included 
by default without appearing in the final system. In 
this way, the number of equations is reduced, but it is 
necessary to proceed with building the constants of 
integration for each step, given that these basic 
unknowns alternate in each iteration once the contact 
conditions modify in all steps. This involves the 
necessity to archive the corresponding contact area-
related constants; given that recalculating the latter 
would result totally inefficient. 
The first step to complete (if necessarily), regardless 
of the chosen process, uses to be the compression of 
the unknowns belonging to the nodes outside the 
contact area. For this, a boundary element standard 
process must be independently applied for each of 
the two solids, taking into consideration the 
following for each of them(formula 3.1) 
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with S=A, B; xL unknowns to eliminated, and xC the 
corresponding to the candidate to contact zone. 
Equations (3.1) can also be expressed as  
 

 SS
C

S VxK                           (3.2) 

 
Each one of the KS matrixes is a 2n x 6n with n the 
number of nodes of the contact area. In fact, there are 
two integral equations for each solid, for each node 
as collocation point, and each node of the contact 
area with 6 unknowns (2 displacements and 2 
tractions in each of its previous and subsequent 
elements), identified as u1, u2, σant,τant, σpos, τpos. 

Finally, it is necessary to add to the previous 
equations 8 equations for each contact node 
corresponding to the contact conditions (the KAB 

matrix) and node type-dependent. For example, for a 
44 node, those would be expressed as (formula 3.2) 

 

 BA uu 11  BA uu 22  A
pos

A
ant    

 A
pos

A
amt   B

ant
B
pos   B

ant
B
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(3.3) 

 B
pos

A
ant   B

pos
A
ant    

The implemented structure for the matrix can be seen 
in Figure 5, with matrixes KA, KAB, KB as the only 
matrixes archived. 
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With regard to the solving process, the Gauss 
elimination process is used, but with a 
pretriangulation of matrixes KA and KB, the ones 
kept unaltered throughout the entire process, with 
pivot on the rows. This said, in each incremental 
step, this can be performed by simply solving a very 
easy and multiple zeroed 6n x 6n equation system (4n 
x 4n on the first assembly alternative, when the 
mandatory traction continuity is taken into 
consideration). 
Solving a contact problem with friction requires 
knowing the history of the entire process, given its 
irreversible character. This implies the necessity to 
follow an incremental process for the solution. On 
the other hand, in a contact problem without friction, 
with an unknown contact area, an iterative process 
can be followed for its computation, and in order to 

establish the contact stress distribution. Finally, in a 
contact problem without friction and with an a priori 
known contact area, a single load process enables 
determining its stress distribution. 
The only general procedure is, therefore, an 
incremental process, the one used in this work. 
 

4 Results 
The first example corresponds to the case solved by 
Woo et al, through a complex variable procedure, of 
a quadratic plate subjected to pure bending 
corresponding to a bending moment equaling 2/3 and 
to a variable crack length. Due to this load, a partial 
crack closure occurs on the compression side and a 
crack opening on the traction.  
 

                 
     Table 1. 

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
l 0.025 0.05 0.05 0.05 0.05 0.1 0.1 
F(obt) 0.05 0.101 0.151 0.203 0.258 0.324 0.402 
Dif %  0.04 0.85 0.21 0.1 0.31 0.39 0.3 
a*(obt) 0.0675 0.1375 0.20625 0.27 0.3482 0.41789 0.4875 
a*(Woo) 0.0668 0.1344 0.2036 0.2749 0.3488 0.4255 0.5052 
Dif(%) 0.69 1.53 0.86 1.2 0.11 1.21 2.39 
F*(obt) 0.066 0.1302 0.20145 275060. 0.3465 0.4366 0.5418 
F^(Woo) 0.0663 0.1344 0.2038 0.276 0.3529 0.4379 0.5403 
F(Woo) 0.05 0.101 0.151 0.203 0.258 0.324 0.402 
Dif(%) 0.3 2.14 0.77 0.23 1.22 2 0.18 

 
The results obtained from the discretization are 
included in Table 1, consisting of 22 quadratic 
elements, 2 linear elements and 4 singular elements 
for each body. In addition, the length values of the 
initial crack a*, the dimensionless SIF factors, 
without taking into consideration the crack closure, 
as the latter takes place at tip A, are also included.  

 

a

K
F I




*

*

*
a

K
F I


  

 
Naturally, if the calculation is made regardless of the 
crack closure effect, the SIF at tip B becomes a 
negative value, indicating the occurrence of 
compressions. If the contact process is continued and 
the crack gets closed, finite compression stresses 
appear on edge B, which along with the singular 
stress distribution undertaken by the singular 

elements give rise to a null SIF value corresponding 
to the real one. 
The value included in the table for the actual contact 
length corresponds to the medium point of the 
elements where the compressive and traction 
conditions take place. 
Finally, what needs to be highlighted within the 
above table is the good concordance with the results 
obtained by Woo, with differences found in all the 
cases below 3%. 
The second case corresponds to a similar one that 
Ballarini et al studied in different conditions. This 
refers to the case of 2 side-quadratic sandstone 
subjected to the uniform tangential stress of a unit 
value on the upper half and fixed on the base. This 
involves a stage at the base that leads to a 
compression on the crack's tip B and the crack's 
partial closure, as well as to a case of traction, with 
the crack opening at tip A. The discretization has 
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been performed with 23 quadratic elements for each 
sub domain and 2 singular elements of a length 1 = 
0,05 situated at the crack's tips A and B, on the 
welding areas. Thus, the total number of nodes is 50 
per each domain.  
As such, the stress intensity factors (SIF) were 
obtained at tips A and B via the aforementioned 
method. Once more, the stresses at tip B are negative, 
but finite, given the lack of singularity; therefore if a 
type 11 singularity approximation is added, the KI 

value should clearly become null, as in fact does 
occur. 
In terms of the KII present at that tip, if the adjacent 
area is under slip, which actually depends on the 
friction coefficient and the load level, again a 
singular distribution of the tangential stresses present 
on SIF will occur, different than zero on modes II. 
The value of KII  shall decisively depend on the 
friction coefficient. On the other hand, if found in 
adherence, the SIF in mode II of tip B shall be null, 
given the presence of a singularity at the tip of the 
adherence area – thus, clearly it is necessarily to 
redefine the mesh and include the singular elements 
on that area if the aim is to calculate it. In this 
example, the load value is sufficient for the tip B to 
be always slipping; therefore such modification is not 
needed. 
As such, the stress intensity factors (SIF) were 
obtained at tips A and B via the aforementioned 
method. Once more, the stresses at tip B are negative, 
but finite, given the lack of singularity; therefore if a 
type 11 singularity approximation is added, the KI 

value should clearly become null, as in fact does 
occur. 
In terms of the KII present at that tip, if the adjacent 
area is under slip, which actually depends on the 
friction coefficient and the load level, again a 
singular distribution of the tangential stresses present 
on SIF will occur, different than zero on mode II. 
The value of KII shall decisively depend on the 
friction coefficient. On the other hand, if found in 
adherence, the SIF in mode II of tip B shall be null, 
given the presence of a singularity at the tip of the 
adherence area – thus, clearly it is necessarily to 
redefine the mesh and include the singular elements 
on that area if the aim is to calculate it. In this 
example, the load value is sufficient for the tip B to 
be always slipping; therefore such modification is not 
needed. 
Table II presents the influence that the friction 
coefficient has on the stress intensity factors for a 

crack with the initial length of 0, 4. In case the crack 
closure is not taken into consideration, the 
dimensionless SIFs computed are the following: 

   
  

 1889.o
a

K
F

A
IA

I 


 30944.0B
IF  

   6575.0A
IIF  

  48993.0B
IIF  

 
were negative values now appear in the ܨூ

஻factor 
because the contact process was not followed until 
reaching the predicted non-null value.  
On the first position of this table it can be noticed 
that the effective crack length does not practically 
depend on the friction coefficient, remaining in any 
case equal to 0, 2766. Moreover, the value of ܨூ

஻ 
remains invariable and essentially null (0,35 ൈ
10ିଷ), whereas the values of ܨூ

஺ and ܨூூ
஺ do not 

substantially change, in accordance with the fact that 
the actual length remains constant, and are slightly 
less than the result of ܨூ

஺ and ܨூூ
஺in case the closure 

by √ܽor a is not considered.  
In this case, evidently, all the values change, 
including the length of the actual crack that may be 
regarded as representative for the geometrical 
conditions of the problem and of the specified load, 
as well as independent of the friction coefficient, 
given that these values extend to any of its other 
values. It should be emphasized that the crack length 
that leads to a SIF equal to its 0,4 length 
correspondent, regardless of the crack closure, is of 
approximately 0,65; in other words, 60% more than 
the coefficient initially expected, thus it is important 
to take into consideration this phenomena in cases of 
loads that generate this. 
The third and last example indicates a simple flexion 
problem with the same dimensions and 
discretizations as the ones on the first example, and 
with the following values: σ1= 2, σ2= 1 and τ = 0,25. 
Once more, singular elements were introduced either 
on the compression edge (B) or on the traction (A), 
so that the SIF in B shall be null after the contact 
process. The value of ܭூூ

஻ depends, however, of the 
contact state (adherence or slip) existing on its 
proximities, and, as such, of the friction coefficient 
between the crack lips. 
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In the following tables, a variation of the actual 
dimensionless SIFs can be observed, defined as 

 



a

K
F

A
IA

I
  

with σ = 1,5  and, analogically, for tip B and for the 
mode II SIF. In addition, to be noted the values of the 
actual crack length and the adherence d length, which 
if not null, leads to a ܨூூ

஻ coefficient null value, as 
indicated. 
 

5 Conclusions  
A complete definition of the contact problem with 
small distortions and displacements was shown 
between the orthotropic environments by means of 
the BEM method, and its capabilities have been 
demonstrated, carrying important advantages in front 
of other means in this domain, especially in terms of 
studying crack closure problems. 
Including singular elements facilitates in a simple 
way the determination of SIFs, including in cases of 
friction and in areas subject to compression, a null 
value being noticed in such cases, as expected. 
It has been confirmed the necessity to incorporate the 
crack closure effects when establishing the SIFs 
strengths if such thing occurs, and the great 
importance of the friction coefficient on the mode II 
factors. On the other hand, the friction coefficient 
essentially does not affect the actual crack length and 
the SIFs in mode I. 
No major influence has been noticed with regard to 
the non-isotropic properties on SIF values, at least 
when the orthotropic axes are aligned with the crack 
and its corresponding load, even though the mode II 
ones alter on high level 
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