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Abstract: In this paper we briefly discuss the origin and derivation of the Bessel models of linear viscoelasticity,
which where first introduced by Colombaro, Giusti and Mainardi in Meccanica, 2017, 52, 825-832.
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1 Introduction

Linear viscoelasticity has proven itself to be one of
the fundamental playgrounds for fraction calculus [8,
14, 18, 20] and the theory of completely monotone
functions [7, 18, 19, 20].

Among the many recent proposals for viscoelas-
tic models, mostly introduced for geophysical and me-
chanical purposes, it is worth stressing the role of the
Maxwell-Prabhakar model [6, 11], also known as the
Giusti-Colombaro model, and of the Bessel models
[3, 4]. The latter, in particular, seem to play an impor-
tant role in the mathematical description of fluid-filled
elastic tubes [12], that justifies a special interest for
this topic from a theoretical biology perspective.

The paper is therefore organized as follows:

In Section 2 we review the physical origin of the
Bessel models. In particular, we briefly summarize
the model for arterial pulse propagation whose vis-
coelastic analogy leads to the simplest realization of a
model of the Bessel class.

In Section 3, we present a generalization of the
viscoelastic model obtained in Section 2 and present
some generalities on its physical properties.

Then, in Section 4, we present a study of the prop-
agation of transient waves in a Bessel body by means
of the Buchen-Mainardi algorithm [2].

Finally, in Section 5 we discuss an electrical lad-
der network dual to a viscoelastic model of the Bessel

type.
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2  Fluid-filled elastic tubes

One of the most interesting question that one could
pose in hemodynamics, form a mathematical perspec-
tive, is: what are the effects that blood viscosity in-
duces on the propagation of a pulse?

This problem can be formulated as follows: let us
consider the propagation of a single pulse as it propa-
gates within a uniform, semi-infinite, elastic tube and
let us also assume the validity of Womersley’s model
for pulsatile flow (see [12] for further details).

Then one can write down, in cylindrical coor-
dinates, the Navier-Stokes equations for the blood,
which can be thought of as an incompressible New-
tonian fluid of density p and kinematic viscosity v. If
one further neglects the motion along the circumferen-
tial direction (i.e. the fluid is not allowed to rotate, for
sake of simplicity) then the general evolution equation
for the system is given by

Yie(t, ) = 3 [1 — ®(t) *] Yau(t, x) (1)

where ¢ is the time, x is the axial direction (along the
axis of symmetry of the tube), * represent the Laplace
convolution integral and Y (t,z) = {U, A, p} with
U the averaged velocity of the fluid on the cross-
sectional area A of the tube and p the pressure of the
fluid. Furthermore, in Eq. (1) we also have two impor-
tant quantities such as ¢ = (A4o/p) S—Z\ Ay» Where Ay
the unperturbed area of the tube, and what we shall
call the memory function ®(¢) (or relaxation rate),
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which can be expressed in the Laplace domain as

2 Li(ysT)
VST Io(V/sT)’

where 7 = A2 /7 v is the so called relaxation time and
Iy, I; denote the modified Bessel functions of order 0,
1, respectively.

Now, inspecting Eq. (2), one can easily notice that
it strongly resembles a form of a wave equation that is
generally found in linear viscoelasticity, according to
the relaxation representation. Therefore, we can im-
mediately conclude that the system is characterized by
a peculiar memory effect which is due to the viscosity
of the fluid.

If we decide to pursue this viscoelastic analogy,
we shall recall that a wave equation, in linear vis-
coelasticity, can also be expressed in the so called
Creep representation. Namely,

&3(7' s) =

2

[1+U(t)+] Yi(t, x) = cf Yau(t,2), 3)

where W(¢) is the so called creep rate, that turns out to
be related to the relaxation one ®(t) by

14+ U(rs)=[1—d(rs) ",

in the Laplace domain. Specifically, for this model we
find that

= _ 2 h(VsT)
VTS = e L)

For sake of simplicity, from now on we will set
the relaxation time 7 = 1.

“

3 Bessel models

A straightforward generalization of the previous
model can be obtained by replacing the creep and re-
laxation rates, W(¢) and ®(t), with the two functions

O, (s) = 2 (’1}; 1) L}:r(lf/\g) 7

&)

I L 2(V+ 1) Il/+1(\/§)
uls) = Vs Lya(Vs)

defined in the Laplace domain, provided that v € R
and v > —1.

A viscoelastic model featuring creep and relax-
ation rates of this kind is then defined to be a model of
the Bessel class [4, 10]. In particular, if we set v = 0
we recover the model discussed in Section 2.

(6)
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Inverting ®,,(s) and W, (s) back to the time do-
main (see [4]) one finds

4(v+1) Zexp

U,(t) = 4v+1)(r+2)+

o
+4(v+1) Z exp
k=1

where j, . and j, 4o j are the kth positive real root of
the Bessel functions of the first kind of order v and
v + 2, respectively.

In the following we provide a graphical represen-
tation of both ®,(¢) and ¥, (¢), respectively in Fig-
ure 1 and 2, for v = 1/4.

(=joyant) , ®)

Figure 1: Rate of relaxation for a Bessel model of or-
der v = 1/4 as a function of time.

By means of the Tauberian theorem, one can eas-
ily compute the asymptotic behaviour for these mod-
els. Specifically, for the rate of relaxation one finds

®,(t)~2(v+1)/Vrt, fort —0, ©)

®,(t) ~4(v+1) exp (—jp t) , fort — oo, (10)

and, for the rate of creep

U, (t)~2(w+1)/Vrt, fort -0, an
U,(t) ~4(v+1)(v+2), fort - o00. (12)

From Figure 3 and Figure 4 one can easily appre-
ciate the clear matching of the rates of creep and relax-
ation with the asymptotic behaviors computed above.

27 Volume 3, 2018



lvano Colombaro, Andrea Giusti

N
20 T T T T T T

16 L

wii)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 2: Rate of creep for a Bessel model of order
v = 1/4 as a function of time.

{1

Figure 3: Rate of relaxation for a Bessel model of or-
der v = 1/4 as a function of time. Matching with the
asymptotic behaviors.

From these asymptotics we can infer a very im-
portant property of the Bessel models, namely they
are characterized by a continuous transition from a
fractional Maxwell-like behaviour, for short times, to
an ordinary Maxwell-like behaviour for late time (see
[4,5]).

It is also important to remark that one can prove
that the constitutive equation for a given Bessel body
only involves ordinary infinite order differential oper-
ators and that it is formally equivalent to an infinite
network of ordinary springs and dash-pots. For fur-
ther details, we invite the intersted reader to refer to
[10].

From a physical perspective, it is also worth re-
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Figure 4: Rate of creep for a Bessel model of order
v = 1/4 as a function of time. Matching with the
asymptotic behaviors.

calling the form of the material functions G(¢) and
J(t), respectively known as the relaxation modulus
and the creep compliance of the material. Now, from
the general theory of linear viscoelasticity, one has
that

t
1—/ o) dt'|
0

G(t) = 6(07) (13)

14)

r t
Jt)=J0") |1+ / (") dt’
L 0 J
Hence, for a general Bessel model of order v one
can easily infer that

Gt v) =4+ 1Y exp (<2t) . (15)

n=17¥"

3t v) = 2(513) A+ D+ 2)t

oo

1
— 4(v+1) Z 5
n=1 jV—i—Q,n

e Iirznt . (16)

In Figure 5 and 6 we show some plots, in loglog
scale, depicting the behavior of the material functions
forv =1/4.

One can also compute the asymptotic behavior for
the material functions, which are then given by

1 — Al 4172 t—0
G(t; v) ~ Ve ’
’ 4(v + 1)].2 exp(—j2.t), t— 00,
v,1 ’
a7
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Figure 5: Relaxation modulus for a Bessel model of
order v = 1/4 as a function of time.
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Figure 6: Creep compliance for a Bessel model of or-
der v = 1/4 as a function of time.

ST R £ 0,
V)~

2D H AW+ (v +2)t, t— oo,

(18)

Again, for sake of completeness, in Figure 7 and
8 we provide some plots, in linear scale, showing the
matching of the analytic expressions for the material
functions with their asymptotic behaviors, for both
short and long time.

4 Transient waves in Bessel media

The study of wave propagation involving fractional
wave equations has been a central research topic of
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Figure 7: Linear scale plot of the relaxation modulus
for a Bessel model of order v = 1/4 as a function of
time. Matching with the asymptotic behaviors.
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Figure 8: Linear scale plot of the creep compliance
for a Bessel model of order v = 1/4 as a function of
time. Matching with the asymptotic behaviors.

the last two decades for the community of fractional
calculus (see e.g. [2, 9, 18].

One of the most interesting phenomena in the
mathematical theory of wave propagation in vis-
coelasticity is the emergence of transient effects.

In this section we discuss the problem of the
propagation of transient pulses within a semi-infinite
Bessel medium. Such a problem has a very well
known formal solution in the Laplace domain [1, 18],
however inverting back to the time domain is often
very difficult even for simple viscoelastic models.

To do that we employed the Buchen-Mainardi al-
gorithm [1, 2, 3] that allowed us to explicitly compute
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the response function r(¢, x) of a Bessel body result-
ing form an impulsive input, ro(t) = r(¢,0) = §(¢),
applied to the free end of the system at ¢t = (0. More
explicitly, approaching the wave-front, i.e. t — T
one finds that

2
r(t,x) ~ exp [(V—Zl) $:| X
oo k 2
33 { A S - )2
k=0 £=0 '
v+1z k-2
XF1/2<(t—a:)1/2’ > )} (19)

where F 5 (2, k) = 2k T*Er £c(2/2), with Z* rep-
resenting the kth repeated integral, whereas the coef-
ficients Ay, o are obtained as a result of the Buchen-
Mainardi algorithm, for further details see [3].

10

Figure 9: The impulse response for the Bessel model
of order v = 0 depicted versus ¢ — z for some fixed
values of z.

The model with v = 0 is particularly interesting
because of its connection with hemodynamics. In par-
ticular, Figure 1 tells us that if a static observer “sits”
at a given position x of the artery, then the peak of
the response function will reach z with a time delay
A = tpeqr, — T, due to the viscosity of the fluid. Fur-
thermore, one can also infer that the viscosity of the
blood will also be responsible for the dissipation of
part of the energy carried by the pulse, that leads to
a damping of the peak as the pulse propagates within
the artery.

5 Electro-Mechanical Analogy

In 1956, B. Gross and R. M. Fuoss first introduced in
the literature a formal correspondence between the an-
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alytical description of electrical ladder structures and
viscoelastic systems (see [15, 16, 17]).

The key idea resulting from the argument pre-
sented by Gross and Fuoss was that one can obtain
an electrical system which is formally equivalent to a
given mechanical system by implementing the follow-
ing (formal) identifications

o stress I current

€ strain V' potential

E elastic — 1/R conductance
modulus

7 viscosity C capacitance

Moreover, if one starts off with a general vis-
coelastic system, its corresponding analogous electri-
cal system would not be described simply in terms of
a single electrical component. Indeed, a viscoelas-
tic system would formally correspond to a class of
electrical ladder networks resulting from the follow-
ing (formal) duality

Spring
Dashpot } {
Now, let us first recall the general stress-strain

relation in the time domain and in non-dimensional
form is given by

o(t) =e(t) + (G*e)(t),

where the dot is to be intended ad the (time) derivative
with respect of the argument of G while * represents
the Laplace convolution product.

Then, if we implement the formal electro-
mechanical analogy discussed above one finds that

It) =V (t)+ (G*V)(¢t), (21)

which represents a characteristic equation for a certain
electrical ladder networks dual to a given viscoelas-
tic model determined by the choice of the relaxation
modulus G(t).

Hence, if we now plug into Eq. (21) the relaxation
modulus of a given Bessel model of order v [13], one
can easily see the Eq. (21) turns into

I(t) = V() +[G(+, v) = V](?).

Resistor
Capacitor

(20)

(22)

From a physical perspective, it is often useful to
study what is the response in current of an electrical
ladder when the system is subject to a step potential,
namely V' (t) = O(t) with © denoting the Heaviside
step function. Thus, plugging the input potential into
Eq. (22) one gets

1) = 6t v) = d+1) 3 Z2Cdont)

v,n

» (23)

n=1
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which clearly describes a completely monotone relax-
ation process.
Furthermore, it is also worth noting that

dI(t) dc(t, v)
— — _d,(t 24
o o (t) (24)
that for ¢t — 07 behaves like
dI(t) t=1/2
B (1) ~ 2+ 1) 2
ULE (AN

which is a peculiar feature of our electro-mechanical
model.
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