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Abstract: In this paper we briefly discuss the origin and derivation of the Bessel models of linear viscoelasticity,
which where first introduced by Colombaro, Giusti and Mainardi in Meccanica, 2017, 52, 825–832.
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1 Introduction

Linear viscoelasticity has proven itself to be one of
the fundamental playgrounds for fraction calculus [8,
14, 18, 20] and the theory of completely monotone
functions [7, 18, 19, 20].

Among the many recent proposals for viscoelas-
tic models, mostly introduced for geophysical and me-
chanical purposes, it is worth stressing the role of the
Maxwell-Prabhakar model [6, 11], also known as the
Giusti-Colombaro model, and of the Bessel models
[3, 4]. The latter, in particular, seem to play an impor-
tant role in the mathematical description of fluid-filled
elastic tubes [12], that justifies a special interest for
this topic from a theoretical biology perspective.

The paper is therefore organized as follows:

In Section 2 we review the physical origin of the
Bessel models. In particular, we briefly summarize
the model for arterial pulse propagation whose vis-
coelastic analogy leads to the simplest realization of a
model of the Bessel class.

In Section 3, we present a generalization of the
viscoelastic model obtained in Section 2 and present
some generalities on its physical properties.

Then, in Section 4, we present a study of the prop-
agation of transient waves in a Bessel body by means
of the Buchen-Mainardi algorithm [2].

Finally, in Section 5 we discuss an electrical lad-
der network dual to a viscoelastic model of the Bessel
type.

2 Fluid-filled elastic tubes

One of the most interesting question that one could
pose in hemodynamics, form a mathematical perspec-
tive, is: what are the effects that blood viscosity in-
duces on the propagation of a pulse?

This problem can be formulated as follows: let us
consider the propagation of a single pulse as it propa-
gates within a uniform, semi-infinite, elastic tube and
let us also assume the validity of Womersley’s model
for pulsatile flow (see [12] for further details).

Then one can write down, in cylindrical coor-
dinates, the Navier-Stokes equations for the blood,
which can be thought of as an incompressible New-
tonian fluid of density ρ and kinematic viscosity ν. If
one further neglects the motion along the circumferen-
tial direction (i.e. the fluid is not allowed to rotate, for
sake of simplicity) then the general evolution equation
for the system is given by

Ytt(t, x) = c20 [1− Φ(t) ∗]Yxx(t, x) , (1)

where t is the time, x is the axial direction (along the
axis of symmetry of the tube), ∗ represent the Laplace
convolution integral and Y (t, x) = {U, A, p} with
U the averaged velocity of the fluid on the cross-
sectional area A of the tube and p the pressure of the
fluid. Furthermore, in Eq. (1) we also have two impor-
tant quantities such as c20 = (A0/ρ) dp

dA |A0 , where A0

the unperturbed area of the tube, and what we shall
call the memory function Φ(t) (or relaxation rate),
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which can be expressed in the Laplace domain as

Φ̃(τ s) =
2√
s τ

I1(
√
s τ)

I0(
√
s τ)

, (2)

where τ = A2
0/π ν is the so called relaxation time and

I0, I1 denote the modified Bessel functions of order 0,
1, respectively.

Now, inspecting Eq. (2), one can easily notice that
it strongly resembles a form of a wave equation that is
generally found in linear viscoelasticity, according to
the relaxation representation. Therefore, we can im-
mediately conclude that the system is characterized by
a peculiar memory effect which is due to the viscosity
of the fluid.

If we decide to pursue this viscoelastic analogy,
we shall recall that a wave equation, in linear vis-
coelasticity, can also be expressed in the so called
Creep representation. Namely,

[1 + Ψ(t) ∗]Ytt(t, x) = c20 Yxx(t, x) , (3)

where Ψ(t) is the so called creep rate, that turns out to
be related to the relaxation one Φ(t) by

1 + Ψ̃(τ s) = [1− Φ̃(τ s)]−1 ,

in the Laplace domain. Specifically, for this model we
find that

Ψ̃(τ s) =
2√
s τ

I1(
√
s τ)

I2(
√
s τ)

. (4)

For sake of simplicity, from now on we will set
the relaxation time τ = 1.

3 Bessel models
A straightforward generalization of the previous
model can be obtained by replacing the creep and re-
laxation rates, Ψ(t) and Φ(t), with the two functions

Φ̃ν(s) :=
2 (ν + 1)√

s

Iν+1(
√
s)

Iν(
√
s)

, (5)

Ψ̃ν(s) :=
2 (ν + 1)√

s

Iν+1(
√
s)

Iν+2(
√
s)
, (6)

defined in the Laplace domain, provided that ν ∈ R
and ν > −1.

A viscoelastic model featuring creep and relax-
ation rates of this kind is then defined to be a model of
the Bessel class [4, 10]. In particular, if we set ν = 0
we recover the model discussed in Section 2.

Inverting Φ̃ν(s) and Ψ̃ν(s) back to the time do-
main (see [4]) one finds

Φν(t) = 4 (ν + 1)
∞∑
k=1

exp
(
−j2ν, k t

)
, (7)

Ψν(t) = 4 (ν + 1)(ν + 2) +

+4 (ν + 1)

∞∑
k=1

exp
(
−j2ν+2, k t

)
, (8)

where jν, k and jν+2, k are the kth positive real root of
the Bessel functions of the first kind of order ν and
ν + 2, respectively.

In the following we provide a graphical represen-
tation of both Φν(t) and Ψν(t), respectively in Fig-
ure 1 and 2, for ν = 1/4.

Figure 1: Rate of relaxation for a Bessel model of or-
der ν = 1/4 as a function of time.

By means of the Tauberian theorem, one can eas-
ily compute the asymptotic behaviour for these mod-
els. Specifically, for the rate of relaxation one finds

Φν(t) ∼ 2 (ν + 1)/
√
π t , for t→ 0 , (9)

Φν(t) ∼ 4 (ν + 1) exp
(
−j2ν, 1 t

)
, for t→∞ , (10)

and, for the rate of creep

Ψν(t) ∼ 2 (ν + 1)/
√
π t , for t→ 0 , (11)

Ψν(t) ∼ 4 (ν + 1)(ν + 2) , for t→∞ . (12)

From Figure 3 and Figure 4 one can easily appre-
ciate the clear matching of the rates of creep and relax-
ation with the asymptotic behaviors computed above.
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Figure 2: Rate of creep for a Bessel model of order
ν = 1/4 as a function of time.

Figure 3: Rate of relaxation for a Bessel model of or-
der ν = 1/4 as a function of time. Matching with the
asymptotic behaviors.

From these asymptotics we can infer a very im-
portant property of the Bessel models, namely they
are characterized by a continuous transition from a
fractional Maxwell-like behaviour, for short times, to
an ordinary Maxwell-like behaviour for late time (see
[4, 5]).

It is also important to remark that one can prove
that the constitutive equation for a given Bessel body
only involves ordinary infinite order differential oper-
ators and that it is formally equivalent to an infinite
network of ordinary springs and dash-pots. For fur-
ther details, we invite the intersted reader to refer to
[10].

From a physical perspective, it is also worth re-

Figure 4: Rate of creep for a Bessel model of order
ν = 1/4 as a function of time. Matching with the
asymptotic behaviors.

calling the form of the material functions G(t) and
J(t), respectively known as the relaxation modulus
and the creep compliance of the material. Now, from
the general theory of linear viscoelasticity, one has
that

G(t) = G(0+)

[
1−

∫ t

0
Φ(t′) dt′

]
, (13)

J(t) = J(0+)

[
1 +

∫ t

0
Ψ(t′) dt′

]
. (14)

Hence, for a general Bessel model of order ν one
can easily infer that

G(t ; ν) = 4(ν + 1)

∞∑
n=1

1

j2ν, n
exp

(
−j2ν, n t

)
, (15)

J(t ; ν) = 2

(
ν + 2

ν + 3

)
+ 4(ν + 1)(ν + 2)t

− 4(ν + 1)
∞∑
n=1

1

j2ν+2, n

e−j
2
ν+2, n t . (16)

In Figure 5 and 6 we show some plots, in loglog
scale, depicting the behavior of the material functions
for ν = 1/4.

One can also compute the asymptotic behavior for
the material functions, which are then given by

G(t ; ν) ∼

{
1− 4(ν+1)√

π
t1/2 , t→ 0 ,

4(ν + 1) 1
j2ν,1

exp(−j2ν,1t) , t→∞ ,

(17)
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Figure 5: Relaxation modulus for a Bessel model of
order ν = 1/4 as a function of time.

Figure 6: Creep compliance for a Bessel model of or-
der ν = 1/4 as a function of time.

J(t ; ν) ∼

{
1 + 4(ν+1)√

π
t1/2 , t→ 0,

2 (ν+2)
(ν+3) + 4(ν + 1)(ν + 2)t , t→∞,

(18)
Again, for sake of completeness, in Figure 7 and

8 we provide some plots, in linear scale, showing the
matching of the analytic expressions for the material
functions with their asymptotic behaviors, for both
short and long time.

4 Transient waves in Bessel media
The study of wave propagation involving fractional
wave equations has been a central research topic of

Figure 7: Linear scale plot of the relaxation modulus
for a Bessel model of order ν = 1/4 as a function of
time. Matching with the asymptotic behaviors.

Figure 8: Linear scale plot of the creep compliance
for a Bessel model of order ν = 1/4 as a function of
time. Matching with the asymptotic behaviors.

the last two decades for the community of fractional
calculus (see e.g. [2, 9, 18].

One of the most interesting phenomena in the
mathematical theory of wave propagation in vis-
coelasticity is the emergence of transient effects.

In this section we discuss the problem of the
propagation of transient pulses within a semi-infinite
Bessel medium. Such a problem has a very well
known formal solution in the Laplace domain [1, 18],
however inverting back to the time domain is often
very difficult even for simple viscoelastic models.

To do that we employed the Buchen-Mainardi al-
gorithm [1, 2, 3] that allowed us to explicitly compute
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the response function r(t, x) of a Bessel body result-
ing form an impulsive input, r0(t) = r(t, 0) = δ(t),
applied to the free end of the system at t = 0. More
explicitly, approaching the wave-front, i.e. t → x+

one finds that

r(t, x) ∼ exp

[
(ν + 1)2

2
x

]
×

×
∞∑
k=0

k∑
`=0

{
Ak,`

x`

`!
(t− x)(k−2)/2 ×

×F1/2

(
(ν + 1)x

(t− x)1/2
,
k − 2

2

)}
(19)

where F1/2

(
z, k2

)
= 2k IkErfc(z/2), with Ik rep-

resenting the kth repeated integral, whereas the coef-
ficients Ak,` are obtained as a result of the Buchen-
Mainardi algorithm, for further details see [3].

Figure 9: The impulse response for the Bessel model
of order ν = 0 depicted versus t − x for some fixed
values of x.

The model with ν = 0 is particularly interesting
because of its connection with hemodynamics. In par-
ticular, Figure 1 tells us that if a static observer “sits”
at a given position x of the artery, then the peak of
the response function will reach x with a time delay
∆ = tpeak − x, due to the viscosity of the fluid. Fur-
thermore, one can also infer that the viscosity of the
blood will also be responsible for the dissipation of
part of the energy carried by the pulse, that leads to
a damping of the peak as the pulse propagates within
the artery.

5 Electro-Mechanical Analogy
In 1956, B. Gross and R. M. Fuoss first introduced in
the literature a formal correspondence between the an-

alytical description of electrical ladder structures and
viscoelastic systems (see [15, 16, 17]).

The key idea resulting from the argument pre-
sented by Gross and Fuoss was that one can obtain
an electrical system which is formally equivalent to a
given mechanical system by implementing the follow-
ing (formal) identifications

σ stress
ε strain
E elastic

modulus
η viscosity

 ⇐⇒


I current
V potential
1/R conductance

C capacitance

Moreover, if one starts off with a general vis-
coelastic system, its corresponding analogous electri-
cal system would not be described simply in terms of
a single electrical component. Indeed, a viscoelas-
tic system would formally correspond to a class of
electrical ladder networks resulting from the follow-
ing (formal) duality

Spring
Dashpot

}
⇐⇒

{
Resistor
Capacitor

Now, let us first recall the general stress-strain
relation in the time domain and in non-dimensional
form is given by

σ(t) = ε(t) + (Ġ ∗ ε)(t) , (20)

where the dot is to be intended ad the (time) derivative
with respect of the argument of G while ∗ represents
the Laplace convolution product.

Then, if we implement the formal electro-
mechanical analogy discussed above one finds that

I(t) = V (t) + (Ġ ∗ V )(t) , (21)

which represents a characteristic equation for a certain
electrical ladder networks dual to a given viscoelas-
tic model determined by the choice of the relaxation
modulus G(t).

Hence, if we now plug into Eq. (21) the relaxation
modulus of a given Bessel model of order ν [13], one
can easily see the Eq. (21) turns into

I(t) = V (t) + [Ġ( · , ν) ∗ V ](t) . (22)

From a physical perspective, it is often useful to
study what is the response in current of an electrical
ladder when the system is subject to a step potential,
namely V (t) = Θ(t) with Θ denoting the Heaviside
step function. Thus, plugging the input potential into
Eq. (22) one gets

I(t) = G(t , ν) = 4(ν+1)

∞∑
n=1

exp
(
−j2ν,nt

)
j2ν,n

, (23)
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which clearly describes a completely monotone relax-
ation process.

Furthermore, it is also worth noting that

dI(t)

dt
=
dG(t , ν)

dt
= −Φν(t) (24)

that for t→ 0+ behaves like

dI(t)

dt
= −Φν(t) ∼ 2(ν + 1)

t−1/2√
π
, (25)

which is a peculiar feature of our electro-mechanical
model.
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