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Abstract: Aluminium Metal matrix composites reinforced with fly ash particles of three different 
particle size ranges ((53–75) µm, (75–103) µm and (103–125) µm) were fabricated using stir casting technique. 
Electrical discharge machining (EDM) was employed to machine the composite materials with copper 
electrode. The influence of EDM process parameters namely peak current, pulse-on-time, pulse-off-time, 
particle size and the percentage fly ash on Material Removal Rate (MRR), Tool Wear Rate (TWR) and Surface 
Roughness(SR) were investigated. Artificial Neural Network (ANN) model was employed to predict the 
material removal rate, tool wear rate and surface roughness of the composites. The experimental values 
coincide with the predicted values of the proposed networks. The process parameters are then optimized using 
desirability based multi response optimization technique to maximize the MRR and minimize both TWR and 
SR. Increase in peak current and pulse-on time increased the MRR while increase in pulse-off time, percentage 
fly ash and fly ash particle size decreased the MRR. 
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1 Introduction 
Metal matrix composites (MMC) are gaining 
increasing attention in aerospace, defense, and 
automobile industries that require lightweight and 
greater wear resistance than the conventional 
materials [1]. Among all the non-conventional 
machining methods, electric discharge machining 
(EDM) is one of the most popular machining 
methods for machining of any material, which is 
electrical conductive - irrespective of its hardness, 
shape and strength. Electrical discharge machining 
process is based on removing material by means of a 
series of repeated electrical discharges between tool 
called the electrode and the work piece in the 
presence of a dielectric fluid. The material is 
removed with the erosive effect of the electrical 
discharges from tool and work piece. Even highly 
fragile sections and weak materials can be machined 
by EDM because there is no direct contact between 
the tool and the work piece. Components such as 
dies, moulds, parts of aerospace, automotive industry 

and surgical components can be machined by EDM 
[2, 3, 4]. The EDM process is independent of the 
hardness of the work piece, but depends on its 
electrical and thermal conductivities and its melting 
point. EDM has become one of the most important 
methods for machining micron and submicron 
components [5].  Machining of Metal Matrix 
Composite (MMC) by traditional methods is difficult 
due to the highly abrasive nature of ceramic 
reinforcements. EDM is an effective alternative 
method for machining MMC with high level of 
accuracy [6]. Gurgui et al.[7] used conventional 
EDM process to manufacture products used in 
medical field such us biological cells, mono fluidics 
systems for dosing drug, tissue engineering. 
Deionised water, kerosene and water-in-oil emulsion, 
water-based dielectrics and gaseous dielectrics such 
as air and oxygen can be used as alternative to the 
commonly used hydrocarbon oil based dielectrics. 
There was a huge difference in the geometrical shape 
of the craters formed while using different dielectrics 
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[8,9]. The current, pulse-on time, flushing pressure, 
gap voltage, pulse-off time, dielectric fliud are the 
parameters influencing the metal removal rate 
(MRR), tool wear rate (TWR), radial overcut (ROC), 
and surface roughness (SR) of Al-MMC composites 
[10, 11]. Chattopadhyay et al [12] reported that peak 
current and pulse-on time are the most significant 
parameters for MRR and TWR, while the peak 
current and electrode rotation are the most significant 
parameters for SR. Diver et al. [13] employed EDM 
process to produce tapered micro-holes in diesel fuel 
injection nozzles with high level of accuracy. In 
addition to machining, EDM can also be considered 
viable alternative for surface treatment [14,15]. The 
size of the reinforcement particles present in 
aluminium composites is one the major factors 
influencing the hardness, tensile strength, impact 
strength, dry sliding wear and friction of the 
composites[16,17].  

 Artificial neural networks (ANNs) is an 
alternative to the statistical analysis methods, 
offering the potential to resolve a number of the 
problems encountered in different applied 
engineering fields. The main advantage of the neural 
network approach over conventional method is that 
the neural network gives a solution without 
specifying the relationships or the form of 
relationships between the input and output variables 
[18]. The neural networks are composed of elements 
(neurons) operating in between the layers. The 
nonlinear transfer function between the elements 
plays a vital role in the quality of prediction. A 
definite function of the ANN can be trained through 
adjusting the values of weights [19]. Sathyabalan et 
al.[20] employed a feed forward, multi layer 
perception neural network with a single hidden layer 
to predict the sliding wear loss and hardness of fly 
ash and SiC reinforced aluminium alloy. Joshi and 
Pande [21] reported that the radial basis function 
neural network is fast and easy to configure, but the 
feed forward back propagation neural network 
provided more accurate process model. Fadare at 
al.[22] used  a three layered feed-forward, back-
propagation artificial neural networks to study the 
influence  of  cutting speed, feed rate, depth of cut, 
coolant pressure, and tool type on the process 
parameters namely the cutting force, feed force, 
machined surface roughness, and circularity. ANN 
was successfully employed to predict the wear rate 
and coefficient of friction for different composites 
[23, 24]. Lin et al. [25] established the machining 
forces-tool wear relationship of an aluminium metal 
matrix composite using multiple regression analysis 
and generalised radial basis function neural network. 

ANN was integrated with genetic algorithms (GAs) 
by Chang et al.[26] to optimize the material selection 
for sustainable products. 

 Multi-objective optimization has been 
applied in many fields of science, including 
engineering, economics. Multi objective optimization 
is concerned with the minimization of a vector of 
objectives that can be the subject of a number of 
constraints. Multi-objective optimization involves the 
simultaneous optimization of two or more conflicting 
objectives. Debaprasanna Puhan at al. [27] proposed 
a hybrid optimization technique using fuzzy logic 
along with Taguchi’s design to find the optimal 
solution for machinability of aluminum silicon 
carbide composite. Emel Kuram and Babur Ozcelik 
[28] conducted experiments on micro-milling of 
Al7075 using Taguchi method and multi objective 
optimization. Amirhossein Amiri at al. [29] presented 
a multivariate process capability index and NORTA 
inverse transformation for multi response 
optimization problem with mixed continuous-discrete 
responses. Ibrahim et al [30] developed a genetic 
algorithm based optimization with the help of neural 
network system using to represent complex systems. 

 In summary the parameters influencing the 
metal removal rate, tool wear rate, radial overcut  and 
surface roughness while electric discharge machining 
are the current, pulse-on time, flushing pressure, gap 
voltage and pulse-off-time. Studies reveal that the 
particle size and the percentage of reinforcement 
present in the aluminium fly ash composite also 
influence the performance of the composites. Even 
though sufficient literature is available on EDM, no 
study has been reported so far on the influence of 
reinforcement particle size on EDM.  So the main 
aim of the present study was to study the influence of 
particle size and the percentage fly ash on EDM. An 
ANN model was developed to predict the MRR, SR 
and TWR of aluminium fly ash composites. EDM 
parameters were than optimized using desirability 
based multiple response optimization method. 

 

2. Material Preparation 

 Fly ash particles procured from thermal 
power plant (Table.1) was sieved into three different 
particle size ranges of (53–75) µm, (75–103) µm and 
(103–125) µm [16]. These particles were reinforced 
into the A380 aluminium alloy (Table.2) by means of 
stir casting technique. Aluminium ingots melted in a 
graphite crucible at a controllable temperature of 
800oC was degassed using solid dry 
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hexachloroethane and the fly ash particulates were 
preheated for 15 min at 650oC to remove the 
moisture content. Fly ash particles (3%, 6% and 9% 
weight) and 1wt % magnesium are then added to the 
molten metal and stirred continuously for 8 min at an 
impeller speed of 600 rpm. The composite melt was 
then poured into the cylindrical permanent metallic 
mould of 12 mm diameter and 20 mm length. 
 

Table 1 Chemical composition of fly ash in weight 
percentage 

 

Table 2 Chemical composition of aluminium (A380) 

alloy in weight percentage 

Constituent Cu Si Mg Fe Mn Zn Ni Pb Sn Ti Al 

Percentage 3.25 8.35 0.18 0.9 0.15 1.65 0.32 0.12 0.09 0.06 balance

3. Experimental Work 

The cast specimens were machined to a 
uniform diameter of 10 mm and height 15 mm. 
Electronica sinking electric discharge machine (Fig. 
1) was used to drill holes of 5 mm diameter in the 
work piece. Copper electrode tool of 5 mm in 
diameter was used and commercial grade kerosene 
was used as dielectric media at a constant jet flushing 
pressure. The work piece and the tool were weighed 
before and after machining by means of an electronic 
weighing machine having accuracy of 0.001g.  An 
electronic timer was used to record the machining 
operation time. MRR is defined as the ratio of the 
difference in mass of work piece before and after 
machining to the machining time. TWR is defined as 
the ratio of the difference in mass of tool before and 
after machining to the machining time. TESA 
RUGOSURF 10G make surface roughness tester was 
used to measure the surface roughness (Ra) of the 
machined work piece.  After each experiment, the SR 
of the machined work piece surface was measured 
using a stylus type surface roughness tester placed 
over the surface table [Fig. 1(b)] with a diamond 
indenter.  

MRR and TWR were calculated using 
Equations [1, 2]: 

MRR = (initial mass of work piece - final 
mass of work piece) / machining time--------[1] 

TWR = (initial mass of electrode - final mass 
of electrode) / machining time      --------[2] 

 

(a) Die sinking electric discharge machine 

 
(b) Surface Roughness Tester 

Fig.1  Experimental setup 

4. Microstructure Studies 

 A homogeneous distribution of secondary 
particles in aluminium matrix is critical to achieve 
high strength. Microstructure was obtained using an 
inverted optical microscope having a magnification 
range of 100X- 1000X. An optical microphotograph 
of aluminium composite containing 6 wt % fly ash 
composites and (103-125) µm in size range is shown 
in Fig. 2. The microstructure shows that the fly ash 
particles are distributed uniformly in aluminium 
alloy. 

5. Design of Neural Network 

 An artificial neural network (ANN) is a 
system that is based on biological operations of 
neural networks. ANN offer the potential to resolve a 
number of the problems encountered in various 
engineering fields. ANNs have been proposed as 
alternatives to the various statistical analysis 
methods. The basic processing elements of ANN are 

Constituent SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O TiO2 
Loss on 
Ignition 

Percentage 
53.44 

22.72 4.48 7.25 3.33 1.34 3.93 1.82 1.58 
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called artificial neurons are highly interconnected 
which transforms a set of inputs to a set of desired 
outputs. Once a network has been structured for a 
particular application, that network is ready to be 
trained. At the start of the process the initial weights 
are chosen randomly. During supervised training, 
both the inputs and the outputs are provided. The 
network processes the inputs and compares its 
resulting outputs against the desired outputs. Errors 
are then propagated back through the system, causing 
the system to adjust the weights which control the 
network. This process occurs over and over as the 
weights are continually tweaked. The same set of 
data is processed many times as the connection 
weights are ever refined. The response of the neural 
network is reviewed and the configuration of the 
system is refined until the neural network's analysis 
of the training data reaches a satisfactory level [31]. 

 
 

 Fig.2 Optical microstructure of composite [6% fly 
ash and (103-125) µm size] 

The basic ANN architecture consists of three 
types of neuron layers namely the input layer, hidden 
layer, and output layers. In feed-forward networks, 
the signal flows from input to output, in a forward 
direction. The feed forward back propagation neural 
network (BPNN) is a more accurate process model 
and is suitable for modeling of complex 
manufacturing processes such as EDM [21]. The 
basic steps adopted in the design process of ANN are 
(a) experimentation and collection of data (b) 
analysis and pre-processing of data (c) design of the 
neural network (d) training and testing of the neural 
networks (e) simulation and prediction with the 
neural networks and (f) analysis and post-processing 
of predicted result. The network was trained 
automatically with the MATLAB® function ‘train’ 
with the ‘weights’ and ‘biases’ initialized to random 
values. During training the weights and the biases are 
adjusted so as to minimize the Mean Square Error 
(MSE). The training can be terminated when the 

MSE = 0.001 or when the number of iterations is 
equal 1000 [22,37]. The performance of the networks 
is tested with the correlation coefficient between the 
predicted and the experimental values for training, 
test and whole dataset. 

 

Fig. 3 Network structure (5–6–3) used for prediction 
 
 The process parameters considered in this 
study are the peak current, pulse-on time, pulse-off 
time, percentage fly ash, and fly ash particle size. The 
mid value (64 μm, 89 μm, 114 μm) of fly ash particle 
size ranges was used for training. 
 
Table 3 Machining parameters and their levels 
Sl.No Factors Units Variable Levels Used 

1 
 Peak current  (A) I 5 10 15 

2 Pulse-on Time 
(sec)

T 4 6 8 

3 Pulse-off  Time 
(sec)

O 1 2 3 

4 
Percentage fly ash 

(wt %) 
P 3 6 9 

5 
Fly ash particle 
size range (µm) 

R 53–75 75–103 103–125 

 

 A standard back-propagation feed-forward 
network was designed using the Neural Network 
Toolbox of MATLAB (R2008a). Levenberg–
Marquard algorithm, substantially faster for many 
medium networks [19] was used to determine the 
optimum network generalization. Commonly used 
linear transfer function was used in the output layer, 
while the sigmoid transfer function [18] was used in 
the hidden layer. The neural network consists of three 
layers namely the input layer; hidden layer and 
output layer [Fig.3]. 80–90% of the data in each 
dataset can be used for training; the remaining 10–
20% of the dataset can be utilized for testing the 
ANN prediction quality [18]. Randomly from the 
available data, 180 sets were used as training, 35 sets 
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for testing and 10 sets were used for validating the 
network. The number of neurons in the input and 
output layers are determined generally by the number 
of input and output variables. In this study there are 
five input neurons and three output neurons as shown 
in Fig.3. Since there is no method to arrive at the 
number of neurons in the hidden layer, six neurons 
were used in this study [37]. 

6. Results and Discussion 

 6.1 Validation of Neural Networks 
 The objective of the trained network system 
is to give the output with minimum percentage of 
error. Regression coefficient (R) value calculates the 
correlation between the output values and the target 
values. If the value of R is equal to 1, then there 
exists a very close relationship exists between them, 
zero means a random relationship and greater than 
0.9 means the quality is better [32].  Fig.4 shows the 
training, validation; testing and combined set of all 
having the R value closer to one, which means that 
the error is less in the selected network structure (5-
6-3). The correlation coefficient between the 
predicted and experimental values using the entire 
data set for MRR, TWR and SR are 0.9927, 0.9704 
and 0.9825 respectively which is a good sign for the 
model to be accurate. A prediction is said to be 
perfect when all the plotted points are sitting closer to 
the central line (the solid line). The accuracy of the 
model can be easily compared by the closeness of the 
data clusters to this line. The best linear fit is 
indicated by a dashed line. It can be inferred from 
Fig.4 that most of the values fall closer to the central 
line indicating the model to be accurate.  A plot of 
the training errors, validation errors, and test errors 
for MRR, TWR and SR is shown in Fig. 4. The 
results observed was reasonable because of the fact 
that the final mean square error was small  
   (Fig.5). The test set error and the validations set 
error had similar characteristics indicating least 
significant over fitting.  
 
 In order to evaluate the accuracy of the 
model, the percentage error between the predicted 
MRR, TWR, SR and their corresponding actual 
values was calculated using Eqn. [3]: 
 
 Error% = {(Actual value − Predicted 
value)/Predicted value} × 100 ------------Eqn. [3] 

 

 
(a) 

 
(b) 

 
(c)  

Fig.4  Regression plot for (a) Material Removal rate 
(b) Tool Wear rate (c) Surface Roughness 
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(a) 

 
(b) 

 
(c) 

Fig .5  Mean square error plot for (a) Material 
Removal rate (b) Tool Wear rate (c) Surface 

Roughness 
The predicted ANNs MRR, TWR and SR were 
compared with the actual values and a good 
agreement was observed (Table.3). The maximum 
deviation of the predicted MRR, TWR and SR were 
6.70%, 7.62% and 5.87% respectively (Table.4). 
Since the predicted values are closer to the 

experimental values, it can be considered that the 
ANN model is accurate. 

6.2 Influence of parameters on Material 
Removal Rate 

  MRR is the weight of the material removed 
per unit time during EDM process. Increase in peak 
current and pulse-on time increased the MRR while 
increase in pulse-off time, percentage fly ash and fly 
ash particle size decreased the MRR. The MRR is 
directly proportional to the product of energy 
transferred per pulse frequency and hence an increase 
in peak current increases the MRR of the composites 
as shown in Fig. 6(a). It can be observed from Fig. 
6(a) that an increase in pulse-on time increases the 
MRR. An increase in pulse-on time increases the 
energy density between the tool and the work piece, 
thereby increasing the MRR [1]. An increase in 
pulse-off time a decreases the heat energy and 
temperature of the work piece and decreases the 
MRR (Fig. 6(b)). Decrease in MRR with increase in 
percentage fly ash and size of fly ash particles MRR 
(Fig. 6(c)) may be due to the increase in resistance 
for the erosion of the fly ash particles. Composites 
with fine fly ash particles exhibited higher MRR than 
those of the composites with coarse fly ash particles. 

 
(a)

 
      
   (b) 
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( c) 

Fig. 6 Response of parameters on MRR 

.3 Influence of parameters on Tool Wear Rate 

Fig. 6(a) shows that an increase in peak 
current increased the TWR. An increase in peak 
current increases the discharge energy and increases 
the presence of debris at the gap between the work 
piece and the electrode causing a high electrode 
wear. Increase in pulse-on time decreased the TWR 
(Fig. 7(a)). It can be observed from Fig. 7(a) that an 
increase in pulse-on time decreased the TWR. This 
may be due to the fact that longer pulse-on time 
improves the heat removal around the surface of 
electrode, thereby decreases the temperature on the 
surface of the electrode and causes less tool wear [1]. 
Increase in pulse-off time increased the TWR (Fig. 
7(b)). At shorter pulse-off time sparking efficiency 
increases due to the stability in temperature. On the 
contrary at longer pulse-off time the fluctuation in 
temperature and energy increases, thereby increasing 
the TWR. Fig. 7(c) shows that an increase in fly ash 
percentage and particle size decreased the TWR of 
the composites. An increase in fly ash particles 
increases the presence of fly ash particles in dielectric 
medium and along the surface of the tool, hence 
reduces the momentum of striking ions leading to a 
decrease in the tool wear.  
        

 
(a) 

 
(b) 

 
(c ) 

Fig.7 Response of parameters on TWR 
6.4 Influence of parameters on Surface 
Roughness 
   It can be observed from Fig. 8 that SR of the 
machined areas of composites increases with increase 
in peak current, pulse-on time, percentage fly ash and 
grain size of the fly ash particles, and decreased with 
increase in pulse-off time.  It is evident from Fig. 8 
(a) that the SR of the composites increased with 
increase in peak current and pulse-on time. Increase 
in peak current and pulse-on time increases the 
thermal energy and penetrates deeper into the 
material and produces deeper crater along the surface 
of the work piece. This may be reason for increase in 
the SR of the composites at higher peak current and 
pulse-on time.  Also higher current and pulse-on time 
results in increased thermal loading on both the tool 
and work piece resulting in high crater size and hence 
rougher the surface [6]. In can be observed from Fig. 
8(b), that increase in pulse-off time decreased the SR 
of the composites. An increase in pulse-off time 
reduces the temperature and provides enough time to 
remove the debris in the discharge gap leading to 
uniform erosion of work piece material, decreasing 
the SR. It can be observed from Fig. 8(c) that an 
increase in percentage fly ash and particle sizes 
increased the SR. 
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Table  4 Comparison of predicted and actual values of EDM parameters 
 

 
Increase in fly ash particles and particles sizes 
influences the non-uniform dispersion of discharge 
energy, thereby increasing the SR. This is also may 
be due to leaving of larger size fly ash particles 
produce larger depression in the matrix. Leaving of 
larger number of fly ash particles also increase the 
SR. 
 

  
(a) 

 

 
(b) 

 

 
(c)  

Fig.8 Response of parameters on SR 

 
 
 

            Actual  Predicted % Error 

  Process parameters  
MRR   
(×10-

3)      
(g/s) 

TWR   
(×10-

5)      
(g/s) 

SR      
(µm) 

MRR   
(×10-

3)      
(g/s) 

TWR   
(×10-

5)      
(g/s) 

SR      
(µm) 

MRR   
(×10-

3)      
(g/s) 

TWR   
(×10-

5)      
(g/s) 

SR     
(µm) 

Sl. 
No. 

P 
(%
wt) R         (µm) 

T 
(sec)    

O 
(sec)    

I 
(A)    

1 3 (53–75) 6 2 5 2.699 1.503 11.520 2.587 1.591 11.537 4.32 5.57 0.15 

2 3 (53–75) 8 2 15 3.150 1.813 13.466 2.952 1.877 13.629 6.70 3.41 1.20 

3 3 (103–125) 4 2 10 2.581 1.676 11.926 2.635 1.613 12.670 2.06 3.91 5.87 

4 6 (75–103) 8 1 15 3.014 1.648 14.439 3.213 1.694 14.136 6.20 2.69 2.14 

5 6 (103–125) 6 3 15 2.712 1.749 13.667 2.789 1.893 13.312 2.75 7.62 2.67 

6 6 (103–125) 8 3 10 2.620 1.468 13.981 2.491 1.568 13.527 5.19 6.36 3.36 

7 9 (53–75) 4 2 15 2.802 1.828 12.702 2.897 1.786 12.917 3.28 2.37 1.66 

8 9 (103–125) 6 3 10 2.447 1.476 13.599 2.458 1.453 13.129 0.45 1.58 3.58 

9 9 (103–125) 8 3 5 2.355 1.195 13.913 2.389 1.147 13.453 1.44 4.18 3.42 

10 9 (103–125) 6 3 5 2.266 1.279 13.055 2.399 1.269 13.874 5.56 0.79 5.90 
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7. Multi Objective Optimization 

 The presence of a number of process 
variables in EDM operation, it is a challenging task 
in selecting the optimal machining parameter 
combination. Lobato et al.[33] studied the treatment 
of multi-response surface using the desirability 
function approach and multi-objective optimization 
associated with the bee colony algorithm, firefly 
colony algorithm and fish swarm algorithm to 
optimize the machinability of stainless steel.  
Derringer and Suich [34] described a multiple 
response method called desirability for optimizing 
the multiple quality characteristics problems. The 
method makes use of an objective function D(X), 
called the desirability function which transforms an 
estimated response into a scale-free value (di) called 
desirability. The desirability value normally ranges 
from 0 to 1. The weighted geometric mean of the 
individual desirability for the responses is termed as 
composite desirability. The factor settings with 
maximum desirability are considered to be the 
optimal parameter conditions [35,36].  

 

Fig.9 Ramp function graph of Desirability 

 

Fig.10. Bar graph of Desirability 

The desirability value was evaluated with the help of 
Design Expert Software. Three responses namely the 
MRR, TWR, and SR, have been optimized 
simultaneously using a set of 50 input values derived 
from Response Surface Method (RSM). The 
optimality solution is to evaluate the input process 
parameters in maximizing the MRR and minimizing 
the TWR and SR respectively. The range and goals 

and optimum values of input parameters namely peak 
current, pulse-on time, pulse-off time, percentage fly 
ash, particle size range and the output characteristics 
viz. MRR, TWR and SR are given in Table 5.  The 
constraints used for multi objective optimization of 
process parameters during EDM of composites plays 
an important role.  Equal importance and weights 
were assigned to all the process parameters and 
responses [Table.5]. The values of process 
parameters were allowed to vary from lower limit to 
higher limit. The set of conditions with highest 
desirability value is selected as optimum condition 
for the responses. The optimal set of conditions with 
higher desirability function is given in Table 5. The 
ramp function graph and bar graph of desirability are 
shown in Fig.9 and Fig.10. The dot on each ramp 
indicates the factor setting or response prediction for 
that particular characteristic. The height of the dot 
shows the desirability of the response. The bar graph 
shows the overall desirability function of the 
responses. Desirability varies from 0 to 1 depending 
upon the closeness of the response towards the 
output. The near optimal region had an overall 
desirability value of 0.653 which indicates the 
closeness of the target [36]. The optimum parameter 
set for the current study is Peak current- 5 Amps, 
Pulse-on Time-7.71 sec, Pulse-off Time-1sec, 
Percentage fly ash-3% and  Particle size-64 µm for 
maximizing the MRR, minimizing TWR and the SR. 

Table 5 Range of parameters and responses for 
desirability 
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1 
Peak current  

(A) In range 
5 15 

1 1 3 
5 

2 
Pulse-on Time 

(sec) In range 
4 8 

1 1 3 
7.71 

3 
Pulse-off 

Time (sec) In range 
1 3 

1 1 3 
1 

4 
Percentage fly 

ash (wt %) In range 
3 9 

1 1 3 
3 

5 
Particle size 
range (µm) In range 

64 114 
1 1 3 

64 

6 
MRR x 10-3 

(g/s) 
Maximize 2.346 3.203 

1 1 3 
2.850 

7 
TWR x10-3 

(g/s) 
Minimize 1.124 2.015 

1 1 3 
1.388 

8 SR (µm) Minimize 10.52 19.85 1 1 3 12.4104 
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8. Conclusions 
 
The effect of process parameters namely the peak 
current, pulse-on-time, pulse-off-time, particle size 
and the percentage fly ash on the material removal 
rate, tool wear rate and surface roughness of 
aluminum–fly ash composites was investigated.  

 Artificial Neural Network was employed to 
predict the material removal rate, tool wear 
rate and surface roughness of the composites.  

 The correlation coefficient (R2) between the 
predicted and experimental values for MRR, 
TWR and SR are 0.9927, 0.9704 and 0.9825 
respectively which is a good sign for the 
model to be within an acceptable limit. 

 Increase in peak current and pulse-on time 
increased the MRR while increase in pulse-
off time, percentage fly ash and fly ash 
particle size decreased the MRR. 

 Increase in pulse-on time, fly ash percentage 
and particle size are decreased the TWR. On 
the contrary increase in peak current and 
pulse-off time increased the TWR. 

 The SR of machined surface of the 
composites are increased with increase in 
peak current, percentage fly ash and grain 
size of the fly ash particles, and decreased 
with increase in pulse-off time and pulse-off 
time. 

 The parameters are then optimized using 
desirability based multi response 
optimization technique to maximize the 
MRR and minimize both TWR and SR. 

 The optimum parameter set for the current 
study is Peak current- 5 Amps, Pulse-on 
Time-7.71 sec, Pulse-off Time-1sec, 
Percentage fly ash-3% and  Particle size-64 
µm for maximizing the MRR, minimizing 
TWR and the SR. 
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