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Abstract: We discuss the numerical modeling of heat and water transport in unsaturated-saturated porous media
with heat exchange between the infiltrated water and porous media matrix. An unsaturated-saturated flow is con-
sidered with boundary conditions reflecting the external driven forces. The developed numerical method is efficient
and can be used for solving inverse problems concerning determination of hydraulic soil parameters, dispersion
coefficients and transmission coefficients for heat energy exchange. Numerical experiments support our method.
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1 Introduction
In this contribution we discuss the heat transported by
infiltrated water into porous media taking into account
the heat exchange between infiltrated water and the
porous media matrix assuming the flow is unsaturated.
This is motivated by an analysis of hygrothermal in-
sulation properties of building facades. The influence
of external weather conditions is included in the con-
sidered model. We focus especially on the determina-
tion of model parameters in a complex mathematical
model. Solution of corresponding inverse problems
relies on measurements in laboratory conditions using
real 3D samples.

The mathematical model consists of the coupled
system of strongly nonlinear PDE of elliptic-parabolic
type. The flow of water in unsaturated-saturated
porous media is governed by Richard’s equation. The
heat energy transported by infiltrated water is subject
to the convection, molecular diffusion, and dispersion,
which are driven by external forces due to water and
heat fluxes caused by weather conditions. Mathemat-
ical models are well known and presented in many
monographs, e.g., [1], with very complex list of quo-
tations. Fundamentals of heat and mass transfer with
many applications are discussed in [9]. In our setting
the heat energy transmission from water in pores to
the porous media matrix is treated analogously to the
reversible adsorption of contaminant in unsaturated
porous media, see e.g. [8],[2]. Additionally, we take
into account the heat conduction of the porous media
matrix itself. Thus, soluted contaminant in water is

replaced by heat energy. Solving the heat conduction
of porous media (without water in pores) is difficult
task and is modeled by homogenization method. In
our setting we assume very simple heat conduction in
matrix, where heat permeability is obtained separately
by solving a corresponding inverse problem and us-
ing practical measurements. We also determine both
transmission coefficient and heat permeability in ma-
trix via the solution of the inverse problem.

Recently, we have discussed in [6] determina-
tion of soil parameters in porous media flow model,
based on empirical van Genuchten/Mualem capil-
lary/pressure model. There, we have used radially
symmetric 3D sample using inflow/outflow measure-
ments. The main reason was that 1D samples (in form
of thin tubes) used before suffer from preferential
stream lines arising in experiments, especially using
centrifugation. We have significantly eliminated this
effect by suitable infiltration scenario with cylindrical
sample, where infiltration flux from sample mantle is
orthogonal to gravitational force. Moreover, the infil-
tration area is substantially larger then the area of the
top of the tube. Thus, we obtained more reliable re-
sults in determination of soil parameters. In figure 1
we sketch the cylinder sample used in experiments.

In this manuscript we present the experiment sce-
narios to determine dispersion coefficients and suc-
cessively also heat exchange parameters: transmission
and heat conduction coefficients. To determine disper-
sion coefficients we suggest the following experiment
scenario. We assume the inflow/outflow concentration
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Figure 1: Sample

of a tracer in the infiltrated water that is perfectly dis-
solved in the water and not adsorbed by the porous
media matrix. We assume that the concentration of a
suitable tracer can be characterized by means of the
electrical resistance. Then transient measurements of
electrical resistance of cumulated outflow water could
be used. Such a tracer has been used in [4]. The con-
centration measurement of cumulated outflow water
is the main information used for determination of dis-
persion coefficients.

The heat energy exchange is modeled by temper-
ature gap, water saturation and transmission coeffi-
cient. It is almost impossible to measure the tem-
perature gap between the water in pores and in ma-
trix inside the porous media, but we can measure the
consequences of heat energy exchange. In our con-
tribution we propose a suitable experimental scenario,
which allows the determination of required model pa-
rameters using relatively simple measurements. The
cylindrical sample is initially uniformly low saturated
(almost dry). The temperature of water and matrix
is the same, e.g. 20◦C. Then we let to infiltrate wa-
ter (through the cylinder mantle) with lower temper-
ature, e.g., 0◦C. The top and bottom boundary of the
cylinder are isolated. We measure the time evolution
of temperature in the middle of the top of the cylin-
der. We note that temperatures of water and matrix in
this point (even on whole axis of the cylinder) are the
same for long time interval in experiment. The reason
is that the infiltrating water has a very sharp front and
slowly progresses towards the cylinder axis. Simulta-
neously the heat is conducted by the matrix and due
to the heat exchange the temperature of water and the

matrix are almost the same in the neighborhood of the
axis and decrease. This observation is supported by
our numerical experiments. Thus, the time evolution
of temperature in the top point of axis is the main in-
formation in determination of transmission coefficient
and, moreover, also heat conduction coefficient of the
matrix.

In this model setting we do not assume the tem-
perature influence on the water flow, but it could be
included. However, the heat transport and its mutual
transmission with the porous matrix strongly depend
on the water saturation in pores.

In the heat and mass transfer problem in facades
we consider 2D problem which represents a cross-
section of the facade. The parallel vertical boundaries
of the rectangle represent the building and outdoor en-
vironment contacts.
In the numerical method we use operator splitting
method where we successively along small time in-
terval separately solve water flow, then heat transport
in water and then in matrix including heat exchange.
In the solution of water flow we follow the approx-
imation strategy introduced in [5] and also used in
well known software Hydrus (see [3]). To control
the correctness of our numerical results we have de-
veloped also an approximation scheme (see [8] used
only for 1D) based on the reduction of the govern-
ing parabolic equations to a stiff system of ordinary
differential equations. This approximation solves si-
multaneously whole system, but computational time
is significantly larger. The main reason is that the
system is stiff and too large when using necessary
space discretization. Comparisons justify our method
which is significantly quicker and therefore applica-
ble in the solution of inverse problems in mathemat-
ical model scaling. Moreover, present method could
be efficiently used also for solving 3D problems.

2 Mathematical Model
2.1 Water Flow Model
Water saturation θ ∈ (θr, θs) (θr is irreducible satura-
tion and θs is porosity) is rescaled to effective satura-
tion

θef (h) =
θ(h)− θr
θs − θr

.

Here, h ([cm]) is hydraulic head and the fundamental
empirical relation between saturation θ and h in terms
of van Genuchten/Mualem empirical model (capil-
lary/pressure law) is

θ(h) = θr +
θs − θr

(1 + (αh)n)m
, θef (h) = 1 (1)
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for h ≥ 0. Hydraulic permeability K is modeled by

K(h) = Ksk(θef ), k(θef ) = θ
1
2
ef (1− (1− θ

1
m
ef )m)2,

(2)
where Ks is hydraulic permeability for fully saturated
porous media. Water flux ~q

~q = (qx, qy), ~q(h) = −K(h)(∇h− ey),

where ey is a unit vector in direction y representing
gravitational driving force. Richards equation is of
the form

∂tθ(h)− div(K(h)(∇h− ey)) = 0 (3)

with the corresponding boundary conditions which
will be specified in numerical experiments section.

2.2 Heat Energy in the Water
Conservation of water heat energy is expressed in
PDE

cv∂t(θTw)− div(−cv~qTw + (Doθ + D̄)︸ ︷︷ ︸
D

∇Tw) =

σθ(Tw − Tm)
(4)

where Tw is temperature of water, cv is heat capacity
of unite water volume, σ is transmission coefficient of
the heat exchange with the matrix. The heat energy
flux is

~QT = −cv~qTw + (Doθ + D̄)︸ ︷︷ ︸
D

∇Tw.

Convective part is cv~qTw and the diffusion/dispersion
are characterized by molecular diffusion coefficient
Do and dispersion matrix D̄, where

D̄ =

(
D1,1 D1,2

D2,1 D2,2

)
=

1

|~q|
×(

αL((qx)2 + αT ((qy)2 (αL − αT )(qxqy)
(αL − αT )(qxqy) αL((qy)2 + αT ((qx)2

)
.

Here, αL, αT are longitudinal and transversal dis-
persion coefficients. The corresponding initial and
boundary conditions will be specified in the numeri-
cal experiments section.

2.3 Heat Conduction in the Matrix
We assume the simple heat conduction model in the
matrix

cm∂tTm − λ∆Tm = σθ(Tw − Tm) (5)

where Tm - matrix temperature, λ - heat conduction
coefficient and cm- heat capacity of the matrix.

2.4 Boundary Conditions
Our solution domain Ω is a rectangle (x, y) ∈
(0, X) × (0, Y ) with X = 5, Y = 10. We consider
the following boundary and initial conditions

∂yTm = 0, QT y = 0, h = h0

on (0, X)× {0} × (0,Υ)

∂yTm = 0, QT y = 0, qy = 0

on (0, X)× {Y } × (0,Υ)

Tm = 20, Tw = 20, h = −200

on (0, X)× (0, Y )× {0},

on {X} × (0, Y )× (0,Υ)

∂xTm = σm,r(TMr − Tm),

QT x = σw,r(TWr − Tm),

qx = σww,r(HWr − h)

and on {0} × (0, Y )× (0,Υ)

− ∂xTm = σm,l(TMl − Tm),

−QT x = σw,l(TWl − Tw),

− qx = σww,l(HWl − h),

where TM, TW, TH are external temperature and
pressure sources, and σ.,r, σ.,l are corresponding
boundary transmission coefficients. In our numerical
experiments we consider on the right boundary the hy-
drostatic pressure h = (Y − y), y ∈ (0, Y ). Also the
boundary flux conditions could be changed to Dirich-
let boundary conditions.

2.5 Mathematical Model in Cylindrical Co-
ordinates

Consider the cylinder with radiusR and height Y . Us-
ing cylindrical coordinates (r, y) in (3), (4) , (5) we
obtain

∂tθ(h) =
1

r
∂r(rK(h)∂rh)+∂y(K(h)(∂yh−1)) (6)

for water flow

cv∂t(θTw)−
(

1

r
∂r(rQT

r) + ∂y(QT y)

)
=

σθ(Tw − Tm)

(7)

for heat transport in water and

cm∂tTm − λ
(

1

r
∂r(rQT

r
m) + ∂y(∂yTm)

)
=

σθ(Tw − Tm).
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Figure 2: Water pressure h and temperatures Tw, Tm
at t = 500s

for heat conduction in the matrix, where

q = −(qr, qy)T , (8)

qr = K(h)∂rh, q
y = K(h)(∂zh− 1),

QT r = −qrTw + θ(D1,1∂rTw +D1,2∂yTw +Doθ,
(9)

QT y = −qyTw + θ(D2,1∂rTw +D2,2∂yTw +Doθ,
(10)

and QT r = ∂rTm.

3 Model Data and Corresponding
Numerical Solution

In our numerical experiments we assume the follow-
ing model data ([CGS] units)

as "standard data" : θ0 = 0.38, θr = 0, Ks =
2.4 10−4, α = 0.0189, n = 2.81, Do = 0.03,
λ = 0.03, αL = 1, αT = 1

10 , cv = cm = 1 and
σ = 0.1. These data correspond to a limestone.
The boundaries 0 × (0, 10) and 5 × (0, 10) are iso-
lated, i.e. qx = 0 and σt = σm = 0. On the
boundary (0, 5) × 0 (bottom) is prescribed pressure
h = 0 (infiltration) and temperature Tw = 0. On
the top (0, 5) × 10 we consider ∂yh = 0 (free out-
flow) and ∂yTw = 0. Porous media matrix is on
all parts of the boundary isolated. We consider ini-
tial conditions h = −200, Tw = Tm = 20. In
numerical experiments we consider uniform partition
of the domain with (Nx, Ny) = (31, 31) grid points
(xi, yj) = (i∆x, j∆y), i, j = 0, 1, ..., 30, ∆x =

X
Nx−1 ,∆y = Y

Ny−1 . The solution is drawn in figure
2.

In the figure 3 we draw flow and temperature
fields for the cross-section in cylinder at the time sec-
tion t = 60s with the modified model data. The water

is infiltrated from the mantle of the cylinder under the
hydraulic pressure. Here R = 10, Y = 10. Other
conditions are the same as in previous figure for fa-
cade.

Figure 3: Water pressure h and temperatures Tw, Tm
in cylinder at t = 60s

4 Numerical Method
In our approximation scheme we apply a flexible
time stepping and a finite volume method in space
variables. The time derivative we approximate by
backwards difference and then we integrate our sys-
tem over the control volume Vi,j with the cor-
ners xi± 1

2
, yj± 1

2
and with the length of the edges

(∆x,∆y). Then, our approximation linked with the
inner grid point (xi, yj) at the time t = tk is

∆x∆y
θ(h)− θ(hk−1)

τ

−∆y

[
K(hi+1) +K(h)

2

(
hi+1 − h

∆x

)]
+ ∆y

[
K(h) +K(hi−1)

2

(
h− hi−1

∆x

)]
−∆x

[
K(hj+1) +K(h)

2

(
hj+1 − h

∆y
− 1

)]
+ ∆x

[
K(h) +K(hj−1)

2

(
h− hj−1

∆y
− 1

)]
= 0.

Omitted indices are of values {i, j, k}.

4.1 Quasi-Newton Linearization
In each (xi, yj) we linearize θ in terms of h iteratively
(with iteration parameter l) following [Cellia at all][5]
in the following way

θ(hk,l+1)− θ(hk−1)

τ
=
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Ck,lh
k,l+1 − hk,l

τ
+
θk,l − θk−1

τ
, (11)

where

Ck,l =
∂θk,l

∂hk,l
=

(θs − θr)(1− n)α(αhk,l)n−1(1 + (αhk,l)n)−(m+1)

for hk,l < 0, else Ck,l = 0. We stop iterations for
l = l∗, when

|hk,l∗ − hk,l∗−1| ≤ Tolerance

and then we put hk := hk,l
∗
.

Finally, we replace the non-linear term K(hk) by
K(hk,l). Our approximation scheme then becomes
linear in terms of hk,l+1. Generally, we speed up
the iteration by a special construction of starting point
hk,0 ≈ hk−1 and eventually using suitable damping
parameter in solving corresponding linearized system.
The complex system is solved by operator splitting
method. To obtain an approximate solution for tem-
peratures in water and matrix at the time section t =
tk, starting from t = tk−1 we use flow characteristics
obtained at t = tk for θk, hk, ~qk, and Dk.

4.2 Approximation Scheme for Water Tem-
perature

For Tw(≡ T ), Tm at (xi, yj) for t = tk we obtain by
finite volume

cvθ
T − T k−1

τ
∆x∆y −∆y

[
−cvqxi+ 1

2

Ti+1 + Ti
2

+

D1,1,i+ 1
2

Ti+1 − Ti
∆x

+

D1,2,i+ 1
2

Ti+1,j+1 + Ti,j+1 − Ti+1,j−1 − Ti,j−1

4∆y

]
+ ∆y

[
−cvqxi− 1

2

Ti + Ti−1

2
+D1,1,i− 1

2

Ti − Ti−1

∆x

+D1,2,i− 1
2

Ti,j+1 + Ti−1,j+1 − Ti,j−1 − Ti−1,j−1

4∆y

]

−∆x

[
−cvqyj+ 1

2

Tj+1 + Tj
2

+D2,2,j+ 1
2

Tj+1 − Tj
∆y

+D2,1,j+ 1
2

Ti+1,j+1 + Ti+1,j − Ti−1,j+1 − Ti−1,j

4∆x

]
+ ∆x

[
−cvqyj− 1

2

Tj + Tj−1

2
+D2,2,j− 1

2

Tj − Tj−1

∆y

+D2,1,j− 1
2

Ti+1,j + Ti+1,j−1 − Ti−1,j − Ti−1,j−1

4∆x

]
= ∆x∆yσθk(Tm − Tw).

4.3 Approximation of ~q and D in Middle
Points

We approximate ~q and D in middle points by

qx
i± 1

2

= −K(hi±1) +K(hi)

2

(
±hi±1 ∓ hi

∆x

)
,

qy
j± 1

2

= −K(hj±1) +K(hj)

2
×(

±hj±1 ∓ hj
∆y

− 1

)
,

qy
i± 1

2

= −K(hi±1) +K(hi)

2
×

(
hi±1,j+1 + hi,j+1 − hi±1,j−1 − hi,j−1

4∆y
− 1

)
,

qx
j± 1

2

= −K(hj±1) +K(hi)

2
×(

hi+1,j±1 + hi+1,j − hi−1,j±1 − hi−1,j

4∆x

)
,

D1,1,i± 1
2

=

(
αL(qx

i± 1
2

)2 + αT (qy
i± 1

2

)2
)

1

|~qi± 1
2
|
+

Doθi± 1
2

D1,2,i± 1
2

= (αL − αT )qx
i± 1

2

qy
i± 1

2

1

|~qi± 1
2
|

and analogously

D2,2,j± 1
2

= D1,1,i± 1
2

(i↔ j;αL ↔ αT );

D2,1,j± 1
2

= D1,2,i± 1
2

(i↔ j).

4.4 Approximation Scheme for Matrix Tem-
perature

The governing PDE with BC and IC

cm∂tTm − λ∆Tm = σθ(Tw − Tm) (12)

Tm = T k
m is approximated by FVM ( (xi, yj),

t = tk ) to

cm
Tm − T k−1

m

τ
∆x∆y

−∆yλ

[
Tm i+1 − Tm i

∆x
− Tm i − Tm i−1

∆x

]
−∆xλ

[
Tm j+1 − Tm j

∆y
−
Tm j − Tm j−1

∆y

]
= ∆x∆yσθk(Tm − Tw).

(13)
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5 Solution of the Inverse Problem
5.1 Determination of σ and λ
Measuring the temperature of water and matrix in
the sample is a difficult task. So we propose the
infiltration scenario which enables us to measure σ.
There is uniformly distributed small amount of water
h = −100 in the sample and the initial temperature of
water and matrix are the same Tw = Tm = 20◦C. The
vertical boundaries are isolated (zero water and tem-
perature fluxes). The top boundary is free and from
the bottom we let water to infiltrate. Water infiltrates
by hydraulic pressure from the mantel. The tempera-
ture of infiltrating water is 0◦C We are measuring the
water temperature on the top boundary. The model
data are the same as data in figure 3. The time evo-
lution of the computed temperature on the top is pre-
sented in the figure 4 (blue line).

Figure 4: Time evolution of temperature in top of the
axis

The computed data have been perturbed by the
0.5◦C of noise using the random function (green line).
These were considered to be measured data. Then, we
forgot our transmission coefficient σ (= 1), and ma-
trix heat conduction coefficient λ (= 0.3) and we used
an iteration procedure to minimize the discrepancy be-
tween the measured data and the computed data.
The optimal point σopt, λopt (with respect to the given
tolerance) is taken for the required transmission and
conduction coefficients. We verify its stability with
respect to the choice of starting points in iteration
procedure. All measured data correspond to differ-
ent random noises. During the measured time interval
t ∈ (0, 500) we have used only 31 time moments.

The obtained results with different starting points
are collected in Table 1. Used starting points are
combinations of σ ∈ {0.5, 1.5} and λ ∈ {0.1, 0.5}.
The final value does not depend on the starting point.
However, it can be noticed that values of parameters
σ, λ slightly mutually interfer. There is always one
that is lower than the exact value while the other is
changed in a opposite way.

Table 1: Optimal values of λ, σ
start σ, λ σ, λ

[0.5, 0.1] [1.0475, 0.2974] [0.9842, 0.3082]

[1.5, 0.1] [0.9547, 0.3277] [1.0212, 0.2945]

[0.5, 0.5] [1.0324, 0.2821] [0.9771, 0.3114]

[1.5, 0.5] [0.9685, 0.2854] [1.0389, 0.2901]

5.2 Determination of Dispersion Coefficients
In this case we reduce our system to (3), (4), where
we interpret the temperature Tw as the concentration
of a tracer. In this case σ = 0. Our solution domain
is cylinder sample (see figure 1) and we consider its
vertical cross-section (0, R) × (0, Y ). Here, on the
bottom part r ∈ (0, R1), we consider the outflow

QY = K(h(r, 0)), i.e. ∂yh = 0

and the rest of the bottom is isolated. The initial
saturation of water in the sample corresponds to the
h = −60 (see (1)) and the concentration is Tw = 0.
From the cylinder mantle infiltrates water with the
constant concentration Tw = 1. The rest model data
are the same as in previous section. We compute the
concentration of the cumulated outflow water and its
time evolution is drawn in figure 5. This represents
the additional measurement used in the solution of the
inverse problem. Determination procedure is the same
as before in σ, λ.

The senzitivity of cumulated outflow concentration

Figure 5: Time evolution of concentration of cumu-
lated outflow water

on dispersion coefficient αL is drawn in figure 6.
The sensitivity of concentration of cumulated outflow
water on dispersion coefficient αT is significantly
smaller and its influence on the solution is very small.
In our experiment αT = αL/10 = 1/10. We compute
the amount of outflow water using these parameters.
Then we perturb it with random noise as can be seen
in figure 5 (green line). Then we forget αL and by
means of measurements given by green line we start
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Figure 6: Sensitivity of concentration on dispersion
coefficient

the iteration procedure in determination of αL,opt. The
results are collected in Table 2. At each starting point
we consider two different noise perturbations. Each
perturbation randomly reaches the value up to one per
mile of unite concentration at each time moment of
measurements.

Table 2: Optimal values of αL

start αL αL

0.5 1.013867 0.997070

1.5 0.993847 1.002343

6 Conclusion
• Numerical modeling of heat exchange arising in

water infiltration in unsaturated porous media is
discussed.

• Efficient numerical method is developed for heat
transport in unsaturated porous media including
the heat exchange with the matrix.

• An infiltration scenario is proposed to deter-
mine the heat transmission coefficient inside the
porous media by solution of inverse problem.

• The developed method is efficient in solving in-
verse problems in determination of soil parame-
ters, dispersion coefficients and transmission co-
efficient. Moreover, the suggested experiment
scenario could be used also for determination of
heat conduction parameter in the matrix.

• General external conditions are prescribed on the

boundary.

• The efficiency of the numerical method is
demonstrated by numerical experiments.
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[6] J. Kačur, P. Mihala, M. Tóth: Determination of
soil parameters under gravitation and centrifugal
forces in 3D infiltration. Vseas transactions on
heat and mass tranfer, Vol. 11, (2016), p. 115-
120.
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