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Abstract: - The paper describes the optimization facility of interaction within the “bridge-track-car” system that 

concerns high-speed railway traffic on the bridges zones. The singularity of the approach to be discussed lies in 

the attempt of integration of the system of elements that work simultaneously and together. The model that takes 

into account vertical oscillation of the car body, bogies, wheels, rails, and superstructure of the bridge. Several 

criteria allow the estimation of various parameters of dynamic interaction and reach the optimal dynamic 

parameters dealing with wheel-rail contact and derailment, comfort of passengers and ballast wearing. Therefore, 

we can obtain the system with predetermined dynamic behavior to decrease or to increase the interaction forces 

in defined places. It allows decreasing stress of ballast or increasing wheel-rail contact force to prevent 

derailment. 
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1 Introduction 
The research of the dynamic processes in the 

complicated “Bridge-track-car” system (BTCS) - 

consists of mechanisms and structures. It requires a 

big amount of information analysis dealing with 

behavior and trends of the BTCS changes. The trend 

analysis is necessary to determine the direction and 

resource of optimizing the system. That is why 

scientific methods of decision-making are needed.  

System analysis could be very useful in this case. 

One of the tools of the system analysis is the 

mathematical theory of optimal control that 

concerned optimal control of a spaceship. This theory 

assumes minimizing a criterion simultaneously with 

the execution of constraints in the form of equations 

and inequations. Minimizing the criteria and 

performing of constraints are achieved by means of 

controlling functions that depend on time in the 

mathematical theory. Though in construction 

engineering the characteristics of a structure must not 

(and cannot) be dependent on a short period of time. 

It is necessary to vary the characteristics on space 

coordinate. Thus, it is necessary to imply stationary 

controlling functions. 

 

 

 

 

 

2 Applied Theory of Optimal Control 
There is a carrying system in methasystem “railroad”. 

The aim of the carrying system is taking any load 

during its functioning and railing, security of the 

strength, stiffness, etc. of the structures. In our 

theory, the BTCS is one of the units of the carrying 

system. This unit has input and output impacts. Input 

impact is the boundary and starting conditions. 

Output impact is a state of the BTCS at the moment 

when the train has left the BTCS completely. In 

accordance with the Eigen frequency, the BTCS 

could be decomposed into elements: sprung mass 

(car body and bogies), unsprung mass (wheelsets) 

and track – intersystem “wheel-rail”, and bridge 

superstructure. 

It is very important to point out, that 

decomposition in our theory does not mean dividing 

the system into isolated elements as it usually 

happens, but dividing the system into subsystems, 

that continuously interact between each other while 

oscillations run on.  

Thus, the BTCS consists of: 

• discrete-continuous structure of the BTCS, 

containing continuous elements – track and bridge 

superstructure; the BTCS includes the bridge and 

transition zones, and discrete subsystem includes 

cars; 
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• mathematical model Z of the BTCS behavior 

(including start and boundary conditions z and 

parameter t); 

• description of the  stationary characteristics O(x) 

of the BTCS; 

• constraints F on BTCS behavior parameters W, W 

= Z(x, t, z, O); 

• stationary controlling functions u = u(x) within 

multitude O, that influence the achievement of the 

aim of the BTCS; 

• functional D describes the quality of the BTCS; 

• quality parameters d of the BTSC, that have to be 

optimized, d=D(u,W). 

The BTCS could be defined as “purposeful 

system”. The target of the BTCS is the train reaching 

the bound of the BTCS, while all the constraints 

(including limits of comfort, safety, loads, etc.) are 

satisfied when the train is inside the BTCS. For an 

optimal system, there is an additional requirement of 

minimizing some parameters. In this case, 

optimization is performed under absolute satisfaction 

of all the constraints. 

The target of the optimal system can be achieved 

by means of controlling functions that determine 

behavior of the system because the starting and 

boundary conditions effect is minimized by the 

choice of the model parameters. The above-

mentioned formulation of the problem allows using 

mathematical theory of optimal controlling. The 

difference of our applied theory from the classical 

one is application of stationary controlling functions, 

i.e. the functions that do not depend on time. The 

second difference is minimization of starting and 

boundary conditions effect while the behavior of the 

BTCS is determined only by the interaction of its 

subsystems. 

The controlling functions are rigidity 𝐸𝑏𝐽𝑜𝛼4(𝑥𝑘) 

and mass 𝛼2(𝑥𝑘)𝜌𝐹0 of the bridge superstructures, 

rail bed stiffness and mass of rail and sleepers. The 

track parameters can be changed by means of 

implementation of different pads stiffness γ(х) and 

sleeper’s spacing δ(х). All mentioned functions 

depend on space, but not on time. Thus, u(x): {α(x), 

γ(x), δ(х)}. For the computer program these functions 

are just many dimensional vectors. 

The vector criterion D has been worked out for 

estimating the quality of the BTCS. D1 is the bridge 

superstructure (beam) criterion. D1 will be discussed 

in another paper.  The D2 criterion consists of three 

criteria that allow minimizing rail bed loading (d21), 

energy dissipation in ballast (d22), and volatility of 

rail bed loading (d23) about predetermined meaning 

Q. 

𝐷2 = 𝑚𝑖𝑛

|

|

∫ ∫ (𝛾(𝑥)𝛿(𝑥)𝑈′(𝑦р − 𝑦𝑏  ))
2

𝑑𝑥𝑑𝑡
𝑇𝐿

∫ ∫ (ср (
𝜕𝑦р

𝜕𝑡 
 

− 
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(𝑑21)
⋮
⋮

(𝑑22)
⋮
⋮

(𝑑23)

 

where U(x,t) = γ(х) δ(х)U'(yr - yb) is rail bed loading, 

cp – dissipation coefficient,  L – the length of  the 

BTCS, T – the time interval while the train is inside 

the BTCS, y – deflection of the rail or the beam. 

The D2 criterion includes physically different 

parameters and therefore application of a goal 

function that summarizes these parameters is wrong. 

Moreover, some criteria may conflict with each 

other, i.e. they demand opposite steps of 

optimization. Thus, it is necessary to find the 

multitude of compromise decisions. Figure 1 shows 

the optimization process. 

 

3 The Carrier System Model  
The model we have introduced above  is sufficient 

enough to consider the required parameters and, on 

the other hand, it is not too complicated to apply the 

theory of the optimal controlling. Of cource, multy-

body train should be considered. 

The model takes into account the following 

parameters shown in Figure 1: 

• Mk, mti, mi, m(x), M(x) means mass of the car body, 

bogie, wheel, track and superstructure 

correspondingly. These parameters may depend on 

the x-coordinate if it is pointed out. For the track, it 

means dependence of the track mass on sleeper 

spacing δ(x). M(x) can be varied by α(x) function. 

Jk, jti, J(x) means the moment of inertia of the car 

body, bogie and superstructure correspondingly. The 

parameters may depend on the x-coordinate if it is 

pointed out. U(x) means vertical stiffness of the rail 

bed, including rail-sleeper fastening, ballast and 

embankment (if it is), that can be varied by γ(x) 

function.  U(x) depends on δ(x) function as well. It is 

important to point out that the non-linear function U 

depends on the direction of vertical movement of the 

rail. If the vertical movement of the rail is positive 

(upwards) respectively the rail bed, the resistance to 

the movement is equal only to frictional force. This 

feature reflects reality and it is significant for high-

speed traffic. J(x) can be varied by α(x) function. 

• y(x,t), y(0,t), y(L,t), yb(x,t) means vertical 

displacement of the rail that depends on  x-coordinate 

and time, starting/boundary conditions and vertical 

displacement of the bridge superstructure. 

• Gk, Ck, Gt, Ct, Pti, Ri means the forces in the 

suspensions of the car and in the rail-wheel contact. 
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The α(x), δ(x) and γ(x) functions are controlling 

function. They are not assigned, but have to be found 

using by criterion of optimization. It is important to 

underline that the ranges of their changing are limited 

by the technologic possibilities. 

In addition, the safety condition should be 

observed. The stability of a wheel motion on a rail 

depends on the ratio between vertical and lateral 

forces in wheel-rail contact.  

The ratio has been determined for different cases. 

Obviously, the single-track superstructure itself does 

not cause horizontal oscillation of the car; it causes 

only pitching and bouncing oscillation of the car if 

the vertical interaction is considered. We do not take 

into account the wind load, but take into account the 

maximum lateral force that the track can bear. 

Therefore, we may assume that horizontal oscillation 

of a car is random. In the worst case, the horizontal 

force may be equal (but not exceed) to the force that 

may shunt the rail in the horizontal lateral direction. 

Therefore, we can estimate the minimal permissible 

value of the vertical force Rmin that prevents 

derailment. According to our conclusion   Rmin > 

23,814 N [3]. 

The theory of the optimal controlling supposes 

equality and inequality constraints bridge, rail and car 

oscillations. Equality constraint F looks like a partial 

differential equation of rail oscillation: 

(𝑘𝑏𝛿(𝑥)𝜌𝑝𝐹𝑝)
𝜕2𝑦𝑝

𝜕𝑡 
2 + ср (

𝜕𝑦р

𝜕𝑡 
 − 

𝜕𝑦𝑏

𝜕𝑡 
 ) +               (1) 

+𝐸𝑝𝐽𝑝 
𝜕4𝑦𝑝

𝜕𝑥4 +  𝛾(𝑥)𝛿(𝑥)𝑈′(𝑦р − 𝑦𝑏 )  = 𝑃(𝑥, 𝑡) 

Similarly, superstructures oscillation equations were 

used [4]. Oscillations of the cars may be presented  by 

ordinary differential equations [4]. 

The inequality constraints F are needed to limit 

minimum vertical force Rmin in wheel-rail contact 

that prevents derailment and vertical acceleration of 

car bodies to obtain acceptable comfort: 

Rmin > Rlim = 23,814 N   (2) 

Wmax < Wlim = 0.35 m/s2    (3) 

 

 

4 Optimisation 
Let us consider the optimisation of dynamic 

interaction of cars and track inside the bridge zone. 

We will use the criterion of minimal irregularity of 

the load on the rail bed in reference to preset meaning 

of the average load Q: 

𝐷 = ∫ ∫(𝛾(𝑥)𝛿(𝑥)𝑈′(𝑦р − 𝑦𝑏  ) − 𝑄)
2

𝑑𝑥𝑑𝑡 (4)
𝑇𝐿

 

Simultaneously we will try to maximize Rmin while a 

train is passing a bridge zone L including transition 

zones for a period of  time T, where L is overall length 

of the bridge zone including transition zones and T is 

the total time of a train motion on the bridge zone. 

 

 

4.1 Wheel-rail contact forces 
Figure 3 shows an example of vertical wheel-rail 

contact force of a single wheel of a car during its 

motion through the superstructure before and after 

optimization. Note, the possibility of wheel lift-off  is 

common knowledge and was discussed for instance 

in [5]. Figure 3 demonstrates the wheel lift-off before 

optimization on the first iteration. Then, the wheel-

rail contact force becomes more stable due to 

optimization and on the sixth iteration we get 

acceptable meaning of the force, that is more than 

Rlim = 23,814 N. 

Figure 4 shows vertical forces of four wheels of 

the second car of a train during its motion through the 

superstructure at the train speed 400 km/h. We take 

into account the second car because oscillation of the 

bridge superstructure gets stabilization after the first 

car passing and superstructure oscillation amplitude 

does not grow while the train is passing the bridge 

superstructure. We can see dangerous decreasing of 

the forces behind the bridge and the wheel lift-off.  

Figure 5 demonstrates the result of optimization – 

the wheel-rail vertical contact forces remain more 

than Rlim = 23,814 N while the train is passing and 

vertical force Rmin = 39.3 kN.  One of the targets of 

optimization has been achieved.  

 

 

4.2 The main goal of optimization 

The main goal of optimization is formulated in (𝑑23). 

Let us discuss the interrelation between (4) and 

demand (2).  

In Figure 6 an example of evolution of D criterion 

(4) and the meaning of Rmin during the train passing 

the bridge zone is shown. At the first iteration, we can 

see the Rmin= 0 and demand (2) is violated.  

At the second iteration, the meaning of the 

criterion D is nosedivng from 7.5 to 2.18 and 

simultaneously Rmin is increasing up to 14.2 kN. 

Further decreasing of the D criterion and 

simultaneous increasing of Rmin is impossible and the 

software is pressed to increase Rmin because the safety 

demand (2) is very strong and must be satisfied in any 

case. At further iterations, D criterion is almost 

constant. At the ninth iteration, the demand (2) is 

already hold.  

Nevertheless, the consequence of the optimization 

may be sufficient. Figure 7 shows the meaning of the 

rail bed load direct under the moving wheels of the 

second car during motion through the bridge zone 

before optimization and Figure 8 – after optimization. 
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The average meaning of the load is decreasing from 

30.8 to 26.2 kN and standard deviation is decreasing 

from 2.79 to 1.41kN. Another important result of 

optimization is that the maximum load has decreased 

to the meaning of 30.69 kN, less than critical meaning 

that leads to plastic deformation in ballast. 

We supposed that optimization for heavier high-

speed train leads to optimal decision for lighter trains. 

Figure 8 demonstrates success of the optimization for 

the heavier perspective train and Figure 9 shows that 

optimal structure for the perspective train remains 

optimal for lighter CHR380 train. The average 

meaning and standard deviation for CHR380 train are 

lower than for the perspective train. 

 

 

4.2 The optimal controlling functions 
The above mentioned results were achieved with the 

single γ(x) controlling function that changes the rail 

bed stiffness along the track. Our research showed 

that the required changes within allowed range of the 

rail bed stiffness can the obtained by grading under-

sleeper pads of mass production. The other types of 

the controlling function in the cases mentioned are 

not required which makes the track structure simpler, 

in spite of obligatory usage of flange rails. 

Sometimes the application of sleeper spacing 

function δ(x) can be required. At last, α(x) controlling 

function is used for bridge superstructure 

optimization and it will be discussed in detail in 

another paper. 

Because of integral character of the criterion (4), 

the optimal result can be achieved with several 

different controlling functions. Managing of 

optimization process allows obtaining technically 

reasonable controlling function. Figure 10 shows the 

unreasonable version of optimal γ(x) function. The 

aim of optimization consists in getting some 

reasonable version of optimal controlling function 

(Figure 11). Slight deviations of the function result 

from discrete character of the optimization process. 

These deviations are negligible and can be presented 

by a line. 

If the single controlling function application is 

deficient several controlling functions can be used 

simultaneously (Figure 12). Figure 11 and Figure 12 

show the significance of the integral carrier system 

(BTCS) research instead of separate consideration of 

different parts of the BTCS because optimal structure 

of the track depends on dynamic properties of the 

bridge superstructure. 

 

 

 

4 Conclusion 
The developed concept of integrated carrying system 

including bridge superstructures, track and cars takes 

into account the interaction inside the system.  

Controlling of dynamic interaction within 

“bridge-track-car” system at the design stage allows 

estimation and assurance of safety level. For ensuring 

safety and acceptable ballast wearing at the high 

speed, it is necessary to explore the whole system. 

The research showed the importance of the integral 

system dynamic analysis without application of 

multiple hypothesis. Thus, the applied theory of 

optimal controlling was developed. The applied 

theory allows design the system of predicted 

behavior.  

Planning of motion within many-dimensional 

behavior and estimation spaces by means of vector-

specified controlling functions may be considered as 

a step forward to development of artificial 

intelligence in a certain science. The computer 

program can make decisions concerning technical 

parameters of the BTCS on the base of analysis of 

great amount of information and the designer makes 

a final decision about the acceptability of the 

computer-aided design. 
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Figure 1: The scheme of solving the BTCS optimization 

 

 
Figure 2: The model of BTCS 

 

 
Figure 3: An example of vertical wheel-rail contact force before and after optimization. 
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Figure 4: Vertical forces of four wheels of the car of a train during motion through the bridge before 

optimization 

 

 
Figure 5: Vertical forces of four wheels of the car of a train during motion through the bridge after optimization 

 

 
Figure 6: Vertical minimal wheel-rail contact force Rmin and D criterion 
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Figure 7: Rail bed load before optimization (perspective train) 

 

 
Figure 8: Rail bed load after optimization (perspective train) 
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Figure 9: Rail bed load under the second car of CHR380 train after track optimization for perspective train 

 

 
Figure 10: The unreasonable version of optimal γ(x) function 
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Figure 11: The reasonable version of optimal γ(x) function 

 

 
Figure 12: The optimal controlling functions in case of less rigid superstructure 
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