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Abstract: - In this study, static and free vibration analysis of planar curved composite Timoshenko beam on 

elastic foundation is investigated via mixed finite element formulation. Torsional rigidity of composite cross-

sections is determined over warping. In the analysis, two-nodded curved element is used with 24 degrees of 

freedom. At each node, the unknowns are three translations, three rotations, two shear forces, one axial force, 

two bending moment and one torque. First, the numerical calculation of the torsional rigidity is verified with 

the literature and the commercial finite element program results SAP2000 and ANSYS. Next, static and free 

vibration analysis of planar curved Timoshenko beam with (Winkler foundation) and without foundation is 

verified with the results available in the literature. In the case of Winkler foundation, the rocking effect is 

considered. Finally, as an original example, planar curved composite beams resting on Pasternak foundation are 

analyzed (static and free vibration) using the present mixed finite element formulation. 
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1 Introduction 
Beam structures are widely used in several fields 

such as, defense, transportation, aerospace structures 

etc. Curved beams are also preferred in many 

engineering fields due to architectural or structural 

reasons, besides straight beams. The literature on 

vibration of planar curved beams, rings, and arches 

is reviewed in [1]. A literature review on the 

vibration of straight and curved composite beams 

between 1989 and 2012 is given by [2]. 

[3] presented elastic and viscoelastic foundation 

models. [4] studied the natural out-of-plane 

vibrations curved beams on elastic foundation. [5] 

formulated a new horizontally curved three-noded 

isoparametric beam element with or without elastic 

foundation and applied the curved beam and ring 

problems. [6] and [7] presented the free vibration 

problem of curved beams resting on Winkler and 

Pasternak foundation, respectively. [8] studied the 

static and free vibration of circular rings on 

tensionless Winkler foundation. [9] derived the 

governing differential equations for free vibrations 

of shear deformable curved beams on Winkler 

foundation and solved numerically. [10] 

investigated the natural frequencies of non-

symmetric thin-walled curved beams on Winkler 

and Pasternak type foundations. Static and free 

vibration analysis of straight and curved 

Timoshenko beams on elastic foundation is studied 

in [11]. [12] presented a static solution for space 

curved beams on Winkler foundation using transfer 

matrix method. By using the Hamiltonian structural 

analysis method, the static analysis of curved 

Timoshenko beams with or without generalized 

two-parameter elastic foundation are carried out by 

[13]. [14] investigated the flexural behaviour of a 

curved orthotropic beam on elastic foundation. The 

free vibration analysis of functionally graded 

circular curved beams resting on elastic foundation 

is presented by using the differential quadrature 

method in [15]. 

In order to handle Saint-Venant torsion problem 

for irregular cross-sections and non-homogenous 

materials it is necessary to use numerical 

approximate solutions. The Saint-Venant torsion 

problem can numerically be calculated by either by 

Prandtl stress function or by means of the warping 

function approach. As an incomplete list of finite 

element solutions, there exists displacement type 

elements by [16-21], stress function solution by [22-

24], hybrid model by [25] and mixed type elements 

by [26-27], homogenized formulation by Nouri and 

Gay 1994 [28]. In the case of laminates and thin-

walled sections and multiply-connected sections, the 

warping function approach by finite elements is 

much simpler [29]. In the literature for the Saint-
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Venant torsion problem, there exist some other 

numerical approaches, namely, the boundary 

element method [30-37], the finite difference 

method [38-39]. 

In this study, the mixed finite element method 

(MFEM) is utilized in the static and free vibration 

analysis of planar curved composite beams resting 

on elastic foundation (Winkler and Pasternak). 

Timoshenko beam theory considers the shear 

influence and the rotary inertia (in dynamic 

analysis). The constitutive equations of layered 

orthotropic beams are derived by reducing the 

constitutive relations of orthotropic materials for 

three-dimensional body [40]. First, the torsional 

rigidity of composite cross-sections is calculated, 

and the results are verified with the literature and 

the commercial program results SAP2000 and 

ANSYS. Next, static and free vibration of 

composite semicircular curved beams is analyzed 

and the results are compared with the commercial 

program results ANSYS. The influence of elastic 

foundation on the natural frequencies of isotropic 

curved beam having the central angle of the arc on 

the plane of the elastic foundation is investigated 

and results are compared with the literature [11]. 

Also, the contribution of the rocking influence is 

considered. Finally, as an original problem, the 

static and free vibration analysis of the curved 

composite beam on Winkler and Pasternak 

foundation is handled as a contribution to the 

literature. 
 

 

2 Formulation 
 

 

2.1 Torsional rigidity 
Torsional rigidity of the composite cross-section is 

determined over warping by using finite element 

formulation in [29]. 

 

2.2 The constitutive relations for composites  
The constitutive equation yields 

 :E    (1) 

 

Fig.1 The stresses in the Frenet Coordinate System 

(N: Total number of layers) 

  is the stress tensor,   is the strain tensor 

and E  is the function of elastic constants. In order 

to derive the constitutive equations of a composite 

beam, firstly the assumptions made on stress, in 

accordance with beam geometry [41], secondly 

some reductions made on the constitutive relation of 

orthotropic materials for the three dimensional body 

by incorporating the Poisson's ratio [40]. 

In Frenet coordinate system (see Fig.1), paying 

attention to 0n b nb     , the constitutive 

relations yield 

[

t t
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In (2), 3 3[   matrix is the function of 

orthotropic material constants. Timoshenko beam 

theory requires shear correction factors and it is 

assumed to be 5 / 6  for a general rectangular cross-

section. By means of the kinematic equations 
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By obtaining strains for beam geometry due to 

displacements [42], the forces and moments for a 

layer can be derived by analytical integration of the 

stresses in each layer through the thickness of the 

cross-section, respectively. 
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N  is the number of the layer, 
L

n  is the width of 

the layer, 
L

b  and 
1L

b


 are the directed distances to 

the bottom and the top of the thL  layer where b is 

positive upward. The constitutive equation in a 

matrix form: 
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or, since 1[ ] [ ]C E , in accordance with (2) and (4), 

(11) yields to the form 
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, ,
t n b

    are curvatures.  

 

2.3 The field equations and functional 
In Frenet coordinate system, the field equations and 

functional for the isotropic homogenous spatial 

Timoshenko beam exist in [43,44,21]. The field 

equations and the functional are extended to 

laminated composite beams in [45-46]. Winkler and 

Pasternak foundation terms inserted to the field 

equations of spatial beam in [47]. The foundation 

rocking terms are inserted to the field equations of 

spatial beam as follows 
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s  is the arc axis of the spatial beam, 

( , , )
t n b

u u uu  is the displacement vector, 

 ( , , )
t n b

  Ω  is the cross section rotation 

vector. ( )
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k ,k ,kk  and ( )
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k ,k ,kk  are 

foundation vectors of Winkler and Pasternak, 

respectively. ( )
R Rt Rn Rb

k ,k ,kk  is foundation rocking 

stiffness vector. u  and Ω  are the accelerations of 

the displacement and rotations, ( , , )
t n b

T T TT 
 
defines 

the force vector, ( , , )
t n b

M M MM  is the moment 

vector,   is the material density. A  is the area of 

the cross section, I  stores the moments of inertia, 

m
C , 

f
C , 

mf
C  and 
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C  are compliance matrices 

where 
mf

C , 
fm

C  are coupling matrices [48]. q  
and 

m  
are the distributed external force and moment 

vectors, respectively. Once the motion is considered 

as harmonic for the free vibration of the beam, the 

conditions  q m 0  are satisfied. Incorporating 

Gateaux differential in terms of (13)-(14) with 

potential operator concept [49] yields to the 

following functional.  
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For a static analysis, the above functional needs 

to be modified by excluding the terms 

 1 2
2

,A  u u ,  1 2
2

, Ω Ω and inserting  ,q u , 

 ,m  . In (15),  the square brackets indicate the 
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inner product, the terms with hats are known values 

on the boundary and the subscripts   and   

represent the geometric and dynamic boundary 

conditions, respectively. 

 

2.4 Mixed finite element formulation 
The linear shape functions are used in the finite 

element formulation. The curvatures are satisfied 

exactly at the nodal points and linearly interpolated 

through the element [44]. Calculation of the natural 

free vibration frequencies of a structural system 

yields to the following standard eigenvalue problem, 

    2[ ] [ ] K M u 0  (16) 

where, [ ]K and [ ]M  are the system and mass matrix 

of the entire domain, respectively. u  is the 

eigenvector (mode shape) and  depicts the natural 

angular frequency of the system. 

 

 
Fig.1 The square composite cross-section with 448 

nine-node quadrilateral mesh elements. 

 

 

3 Numerical Examples 
 

 

3.1 Calculation of torsional rigidity 
A new computer program based on the finite 

element (FE) formulation is developed using 

FORTRAN language in order to calculate the 

torsional rigidity of composite sections by the 

approach given in [29]. [29] considers the warping 

of the cross-sections. The torsional rigidities of an 

isotropic and composite square cross-section with 

two layers are obtained. The results are compared 

by the literature, SAP2000 and ANSYS in order to 

verify our developed FE program. 

The non-dimensional width of the cross-section 

and the bottom layer's shear modulus are unity. The 

torsional rigidities of the section are obtained for top 

layer's shear modulus 1, 2, 3, respectively. The 

developed FE program is used with 448 nine-node 

quadratic quadrilateral mesh elements on the cross-

section (Fig.1). The results are compared by [39,50], 

SAP2000 and ANSYS and given in Table 1. For 

ANSYS solution a 35m  long composite solid beam 

under 0.01Nm  torque is used. Element size of the 

mesh is 0.2m . 

 

Table 1. The torsional rigidities of a square 

composite cross-section 

 tGI  Diff. % 

2 1G G  1 2 3 1 2 3 

This 

Study 
0.1406 0.1970 0.2395    

[50] 0.1406 0.1970 0.2394 0.00 0.00 0.04 

[39] 0.1388 0.1941 0.2358 1.28 1.47 1.54 

SAP2000 0.1406 0.1970 0.2395 0.00 0.00 0.00 

ANSYS 0.1402 0.1963 0.2385 0.28 0.36 0.42 

 

3.2 Free vibration analysis of a planar 

curved beam on Winkler foundation 

The fixed-fixed boundary condition is used. The 

material and geometric properties of the beam are: 

the modulus of elasticity is 47.24GPaE  , 

Poisson's ratio is 0.2  , the density of material is 
35000kg/m  , the radius of curved beam is 

7.63mR  , the dimensions of rectangular cross-

section are 0.762mb h  . The component of 

Winkler foundation constant in the direction b is 

23.623MPa
Wb

k  , the foundation rocking stiffness 

constant in the direction t is 1143kNm/m
Rt

k  . The 

first five natural frequencies for a curved beam on 

Winkler foundation having various opening angles 

  ( 45 , 90 ,135 ,180 , 225 , 270      ) are calculated 

and the results are tabulated together with the 

literature results [11] in Table 2. ANSYS results 

also exist in [11]. MFEM results determined using 

80 mixed FEs are a good agreement with [11]. 

As the opening angles of the planar curved beam 

on elastic foundation increase, a reduction in the 

natural frequencies of the curved beam beams is 

observed. If the fundamental natural frequencies in 

each opening angles   are compared with respect to 

the results of 45   , the percent reduction for the 

cases 90 ,135 ,180 , 225       and 270  are in 

between 66% ~ 76% . 
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Table 2. The first natural frequencies for the curved 

beam with the fixed-fixed boundary conditions 

Opening 

angle 

( ) 

 1
  

2
  

3
  

4
  

5
  

 (in Hz) 

45  

[11] 

ANSYS 
61.36 151.07 171.48 267.24 333.91 

[11] 61.38 151.11 180.68 267.31 351.81 

MFEM 61.30 150.97 172.92 267.14 334.65 

90  

[11] 

ANSYS 
20.79 44.04 81.39 94.26 128.67 

[11] 20.79 44.05 81.42 99.33 128.71 

MFEM 20.76 43.94 81.27 96.87 128.55 

135  

[11] 

ANSYS 
15.66 23.05 38.97 61.50 71.32 

[11] 15.66 22.97 38.98 61.52 75.16 

MFEM 15.66 22.99 38.62 61.37 74.74 

180  

[11] 

ANSYS 
14.72 17.22 24.49 36.53 52.43 

[11] 14.72 17.22 24.50 36.55 52.45 

MFEM 14.73 17.20 24.41 36.42 52.30 

225  

[11] 

ANSYS 
14.49 15.40 18.77 25.43 35.11 

[11] 14.49 15.41 18.78 25.44 35.12 

MFEM 14.49 15.40 18.72 25.34 34.99 

270  

[11] 

ANSYS 
14.41 14.78 16.37 20.07 26.08 

[11] 14.41 14.78 16.37 20.07 26.09 

MFEM 14.41 14.78 16.35 20.01 25.99 

 

3.3 Static and free vibration analysis of a 

planar composite curved beam 

The static and free vibration analysis of composite 

curved beams with and without elastic foundation is 

carried out. The fixed-fixed boundary condition is 

employed. The composite circular beam having 

rectangular composite cross-section which is made 

of steel on the bottom and concrete on the top as 

shown in Fig.2 is considered. The material 

properties and geometrical properties are as follows: 

the modulus of elasticity for steel is 210GPasE  , 

Poisson's ratio is 0.3s   and the material density 

is 
37850kg/ms  . The modulus of elasticity for 

concrete 30GPacE  , Poisson's ratio is 0.2c   

and the material density is 32400kg/mc  . The 

radius of composite curved beam is 1.2mR  , the 

opening angle is o180 . The dimensions of 

rectangular cross-section in Fig.2 are 0.15mb  , 

1 0.02mh  , 2 0.10mh  . The planar curved beam 

is subjected to a uniformly distributed vertical load 

560 N/mq  . 80 mixed FEs are employed in the 

following numerical examples. The calculation of 

torsional rigidity of composite cross-section (see 

Fig.2) is carried out by using the FE program which 

is mentioned and verified in section 3.1. 
  

 
Fig.2 Composite cross-section 

 

3.3.1 The curved beam without foundation  

The maximum 
b

u  displacement and fixed end 

reactions (
b

T : shear force, 
t

M  and 
n

M : moments) 

and the first five natural frequencies of composite 

curved beam are used for the numerical 

comparisons in static and free vibration analysis. 

The all results are compared with the commercial 

program results ANSYS and presented in Tables 3-

4. The 
b

u  displacements along the span of curved 

beam and the mode shapes of first five natural 

frequencies are given in Figs. 3-4, respectively.  

 

Table 3. The static analysis results of curved beam 

 (mm)
b

u  (N)
b

T  (Nm)
t

M  (Nm)
n

M  

MFEM 0.3533 1055.58 239.76 806.51 

ANSYS 0.3529 1055.60 240.79 807.45 

Dif.% 0.11 0.00 -0.43 -0.12 

 

Table 4. The first five natural frequencies (in Hz) of 

curved beam  

 1
  

2
  

3
  

4
  

5
  

MFEM 29.749 83.942 87.768 174.508 185.187 

ANSYS 29.715 83.946 87.500 173.260 185.540 

Dif.% 0.11 0.00 0.31 0.72 -0.19 

 

 
Fig.3 The b

u  displacements along the span of 

curved beam 
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  (c) 
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  

 

   
 (d) 

4
  (e) 

5
  

Fig.4 The mode shapes first five natural frequencies 

of curved beam without foundation 

 

3.3.2 The curved beam with foundation  

The components of Winkler and Pasternak 

foundation constants in the direction b are 
2100kN/m

Wb
k   and 200kN

Pb
k  , respectively. 

The maximum 
b

u  displacement and fixed end 

reactions (
b

T : shear force, 
t

M  and 
n

M : moments) 

and the first five natural frequencies of composite 

curved beam are tabulated in Tables 5-6.  

   

Table 5. The static analysis of curved beam on 

elastic foundation 

b
W

k  

2(kN/m )  

b
P

k  

(kN)  

b
u  

(mm)  

b
T  

(N)  

t
M  

(Nm)  

n
M  

(Nm)  

100 0 0.329 1023.49 229.17 774.03 

 200 0.304 1055.08 212.83 730.38 

 

Table 6. The first five natural frequencies (in Hz) of 

curved beam on elastic foundation 

b
W

k  

2(kN/m )  

b
P

k  

(kN)  
1

  
2

  
3

  
4

  
5

  

100 0 30.80 84.70 88.43 175.85 186.01 

 200 32.02 85.41 89.30 177.01 186.50 

 

If the maximum 
b

u  displacements for the curved 

beam on resting Winkler and Pasternak foundation 

are compared with respect to the results of the 

curved beam without foundation, the percent 

reduction for Winkler and Pasternak foundations are 

6.9% and 14.0%, respectively (see Tables 3 and 5). 

When a similar comparison is made for free 

vibration analysis of the curved beam without 

foundation, the percent increases for Winkler and 

Pasternak foundations are 3.5% and 7.6%, 

respectively (see Tables 4 and 6).   

 

 

4 Conclusion 
Static and free vibration analysis of a planar curved 

beam on resting Pasternak foundation having the 

composite cross-section is performed via the mixed 

finite element method. The finite element solutions 

are compared with the literature and the commercial 

program ANSYS. The following remarks can be 

given:  

 The finite element formulation which is 

verified with the literature is used to calculate the 

torsional rigidity of the composite cross-section. 

 The influence of the opening angle of a curved 

beam on resting Winkler foundation on the natural 

frequencies is investigated and verified with the 

literature. 

 The static and free vibration analysis of 

composite curved beams without elastic foundation 

is carried out and verified with the commercial 

program results ANSYS. 

 The static and free vibration analysis of 

composite curved beams on resting Pasternak 

foundation is investigated and the results are 

presented as an original example. 
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