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Abstract: - In civil engineering, the sizing optimization of truss structures is a widely used practice. The aim of
the optimization is to minimize the total weight of truss members by considering the constraints of several
members and nodes. Two types of constraints are important in design and these constraints are stress and
displacement limitations. In the recent study, a non-linear programming tool employing the interior-point
algorithm was integrated with the analyses of truss structures. As numerical examples, two space structures and
a plane structure were optimized. The results were compared with the documented methods. As a conclusion
the proposed method is more effective on computation time compared to other methods.
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1 Introduction

In optimization theory, optimum sizing design of
truss structures is an important engineering practice.
This problem has non-linear constraints. Firstly, the
stress of the members of the truss structures must
not exceed the fracture limits. For the calculation of
the stress, the area of truss members must be defined
and the analyses of internal forces must be done.
These analyses can be only done after the cross-
sectional areas of the structural members are known.
These areas are the design variables and the problem
is non-linear. Also, the nodal displacements can be
only calculated after the assignment of design
variables. In that case, numerical algorithms are
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used in the optimum design. Another option is to
use non-linear programming tools.

In the documented methods, several algorithms have
been modified for the optimum design of truss
structures. In the Table 1, the employed algorithms
and references presented.

In the recent study, a non-linear programming tool
is proposed for the sizing optimization of truss
structures. The fmincon function of Matlab [24] was
integrated into the analyses of truss structures. The
function employs the interior point algorithm
developed by Fiacco and McCornick [25]. The
proposed method was tested on space and plane
truss structures.
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TABLE I. THE DOCUMENET METHODS FOR THE
TRUSS OPTIMIZATION

Method Reference

A dual simplex algorithm (DSA) [1]

Genetic algorithm (GA) [2-4]

Ant colony optimization (ACO) [5]

Big bang-big crunch (BB-BC) [6]

Particle Swarm optimizer with [7]

passive congregation (HPSO)

Particle swarm optimization (PSO) [8]

Simulated annealing (SA) [9]

Hybrid of BB-BC and PSO (HBB- [10]

BC)

Actificial bee colony (ABC) [11]

Harmony search (HS) [12-13]

Teaching learning based optimization [14-16]

(TLBO)

Hybrid particle swallow optimization [17]

(HPSO)

Chaotic swarming of particle (CSP) [18]

Colliding bodies optimization [19-20]

(CBO)

Flower pollination algorithm (FPA) [21]

Ray Optimization [22]

Hybrid of PSO, ACO and HS [23]

(HPSACO)

2 The Optimization Problem

The number of degrees of freedom of truss structure
(n) is defined as

n=dN -s Q)
if N>2 nodes and s>0 fixed nodal coordinate
directions. The number of nodal freedoms (d) is 2
for planar trusses and 3 for space trusses. In that
case, the number of bars (m) is defined as follows
since long bars overlapping small bars must be
prevented;

N(N -
mZnandmé%.

(2)

The normalized weight of i" bar (A;) can be shown
as A>0 for i€ (1,....,m). If the material properties of
bars are equal,

ri =LA (A eR). 3)

The density of the bars is shown with y while Li>0

is the length of the i™ bar. The cross-sectional area
of the i" bar is shown with A;. The design variables
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of the optimization problem are Ag,..., A;,....,An, Tor
i=1,....,m. The elastic equation of equilibrium can be
written as

(4)

K(A)u, =P,

where u, e R", K(A) e R™" and P eR" are the

displacement vector of nodes in global reduced
coordinates , the stiffness matrix of the truss and
external force vector, respectively. The stiffness
matrix of the truss is obtained by merging the
element stiffness matrix in global coordinates

(K, (A) e R?4¥24)_For a space truss structure,

[ a2 ab a -a® —ab -ac|
ab b®> bc -ab -b®> —hc
2 2
K, (A) = EA ac2 bc c —a;c -bc ¢ (5)
—-a° —ab —-ac a ab ac
—ab -b®> —bc ab b?> bc
|-ac -bc ¢* ac bc c? |
where,
) L. .
a:ﬁ,b:iandc=i- (6)
Li Li Li

After the truss stiffness matrix is generated, the
corresponding rows and columns of the fixed nodes
are eliminated. Ly, Ly, and L, are the length i" bar
in global x,y and z coordinates, respectively. E is the
modulus of elasticity.

The design variables are searched between upper
(A") and lower (A") bounds,

One of the two design constraints is g:(A)<0. It
related to the limitation of stress of the i bar (o)
with tensile limit (") and compression limitation
(oY) as seen in (8).

(8)

0.(A) ot <o, <cY i=l..m

The stress on the global coordinates are found
according to (9).

)

The other constraint is related with the limitation of
displacements defined in a nodal displacement
vector of i bar (u;). It is shown as

g,(A):ut <u; <uVi=L...N, (10)

Volume 1, 2016



Gebrail Bekdas et al.

where u"and u” are limit of ranges defined as;

‘UL‘:‘UU‘;ULSO,UU>O. (1)
The objective function (f(A)) can be written as
follows;

min f(A)=iki . (12)

i=1

The aim of the optimization is to minimize the total
weight of the bars. In the proposed method, the code
provided for the analyses of the design constraints
were integrated to the fmincon function of Matlab
[24]. The results with the comparison with the other
methods are presented in the following section.
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3 Numerical Example

The numerical studies cover three truss structures;
two space (25 bar and 72 bar) and a planar (200 bar)
[21].

3.1 25 bar truss structure

The model of the structure is shown in Figure 1. The
loading cases are shown in Table 2. The elasticity
modulus and density are taken as 10 Msi and 0.1
Ib/in®. The ranges of design variables are between
0.01 and 3.4 in’ The constraints of bars are
presented in Table 3 for tensile and compressive
stresses. The displacement is limited to 0.35 in. The
optimum results are given in Table 4 with the results
of other methods.

Figure 1 25-bar truss structure.

TABLE Il. THE LOADING CASES OF 25-BAR STRUCTURE

ISSN: 2367-8992

276

Volume 1, 2016



International Journal of Theoretical and Applied Mechanics

Gebrail Bekdas et al. http://www.iaras.org/iaras/journals/ijtam
Case Node Py (Kips) Py (Kips) P, (kips)
1 1.0 10.0 -5.0
2 0.0 10.0 -5.0
! 3 0.5 0.0 0.0
6 0.0 0.0 0.0
5 1 0.0 20.0 -5.0
2 0.0 -20.0 -5.0
TABLE Ill. THE DESIGN CONSTRAINT LIMITS OF 25-BAR STRUCTURE
Element Compression
group Members (ksi) Tension (ksi)
1 1 35.092 35
2 2-5 11.590 35
3 6-9 17.305 35
4 10,11 35.092 35
5 12,13 35.092 35
6 14-17 6.759 35
7 18-21 6.959 35
8 22-25 11.082 35

TABLE IV. THE OPTIMUM RESULTS OF THE 25-BAR STRUCTURE

I T A I T I I A
1 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0110 0.0100 0.0100 0.0100 0.0100 0.0100
2 2.0119 2.0000 1.9700 2.0920 1.9870 1.9930 1.9790 1.9878 1.9907 2.1297 1.8308 1.9891
3 2.9493 29660  3.0160 2.9640  2.9935 3.0560 3.0030 2.9914 2.9881 2.8865 3.1834 2.9905
4 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0102 0.0100 0.0100 0.0100 0.0100
5 0.0295 0.0120 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
6 0.6838 0.6890  0.6940 0.6890 0.6840 0.6650 0.6900  0.6828 0.6824  0.6792 0.7017 0.6835
7 1.6798 1.6790 1.6810 1.6010 1.6769 1.6420 1.6790 1.6775 1.6764 1.6077 1.7266 1.6766
8 2.6759 2.6680 2.6430 2.6860 2.6621 2.6790 2.6520 2.6640 2.6656 2.6927 2.5713 2.6635
BESt(\Iﬁ/;ight 54580  545.53 545.19 545.38 545.16 545.16 545.19 545.18 545.16 54431 545.16 545.16
Number of Duration
Sat:;(l:)t/l;;l - 16500 125000 20566 400 12500 500000 12199 13326 9090 8149 2.69s

The second example (Figure 2) is a 72 bar truss
3.2 72 bar truss structure structure. The loading cases of 72 bar truss structure
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can be seen in Table 5. The material properties are
the same as the first numerical example, but the
maximum displacement is 0.25 and the stress limits
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+25 ksi for all members. The cross sectional areas
must be between 0.1 and 3.0 in?. The optimum
results with design groups are presented in Table 6.

Figure 2 72-bar truss structure.

TABLE V. THE LOADING CASES OF 72-BAR STRUCTURE

Case Node Px Py Pz
(kips) (kips) (kips)
1 17-20 -5.0 -5.0 -5.0
2 17 5.0 5.0 -5.0

3.3 200 bar truss structure

The last problem is a large planar truss structure. As
seen in Figure 3, the structure has 200 elements and
77 nodes. The material properties such as the
elasticity modulus and density of the material are
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taken as 30 Msi and 0.283 Ib/in3, respectively. The
problem has no displacement constraint. The stress
constraints are 10 ksi for all members and
directions. The range of design variables is between
0.1 and 20 in’. The members are grouped in 29
sizing variables as seen in Table 7.
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The structure is subject to three loading cases. In the
first case, +1 kip load is applied in X-direction at
nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71.
Secondly, -10 kips load is applied in Y-direction at
nodes 1-6, 8, 10, 12, 14-20, 22, 24, 26, 28-34, 36,
38, 40, 42-48, 50, 52, 54, 56-62, 64, 66, 68, 70-75.
The final case is the combination of first and second
loading cases. The optimum design must be suitable
for all cases. The optimum results are presented in
Table 8.
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10x144 in:

Figure 3 200-bar truss structure.

TABLE VII. ' THE MEMBER GROUPING OF THE 200-BAR STRUCTURE
Element Members Element Members
group group
82, 83, 85, 86, 88, 89, 91, 92,
1 1,2,3,4 16 103, 104, 106, 107, 109, 110,
112, 113
2 5,8, 11, 14, 17 17 115, 116, 117, 118
3 19, 20, 21, 22, 23, 24 18 119, 122, 125, 128, 131
18, 25, 56, 63, 94, 101, 132,
4 139, 170, 177 19 133, 134, 135, 136, 137, 138
5 26, 29, 32, 35, 38 20 140, 143, 146, 149, 152
6. 7. 9. 10, 12, 13, 15, 16, 27, 120, 121, 123, 124, 126, 127,
6 28.30. 31 33. 34. 36. 37 21 129, 130, 141, 142, 144, 145,
TET ET R S T 147, 148, 150, 151
7 39, 40, 41, 42 22 153, 154, 155, 156
8 43, 46, 49, 52, 55 23 157, 160, 163, 166, 169
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9 57, 58, 59, 60, 61, 62 24 171,172,173, 174, 175, 176
10 64, 67,70, 73, 76 25 178, 181, 184, 187, 190
1 44, 85, 47, 45, 50, 5L 53, 54, 167, 168, 179, 160, 16, 165
T T T A e 185, 186, 188, 189
12 77,78,79, 80 27 191, 192, 193, 194
13 81, 84, 87, 90, 93 28 195, 17, 198, 200
14 95, 96, 97, 98, 99, 100 29 196, 199
15 102, 105, 108, 111, 114
4 Conclusions For the last example, the duration of the

According to the results of the proposed method
integrated with analyses of truss structures, the
proposal is a comparative method according to the
other documented methods. Comparing to the other
methods using metaheuristic algorithms, the
method is effective in the computational effort.

For example, the total optimization period is only
2.69 s for the proposed method. At the same
computer system, a structural analysis in
metaheuristic based methods is 0.1512 s long. In
that case, the FPA based method [21] is effective to
find the similar optimum value in 1232.13 s.
Similarly, the optimum result of the second
example is found in 11.64 s while FPA [21] is
effective to find an optimum value in 1067.23 s by
using the same equipment. It must be noted that the
other methods need more analyses than the FPA
based method.

optimization is 550.99 s which is significantly more
than the other examples for the proposed method.
Since the problem is big, the duration of an analysis
(0.2138 s) is nearly two times of the second
example. In that case, the FPA based method [21]
is effective to find the optimum value in 2284.453
s. For this example, several methods may be
effective in reduction of optimum weight, but
minor constraint violations may occur in the
metaheuristic algorithm based methods.

As a conclusion, the proposed strategy for the
optimum sizing of truss structures is a quick and
effective tool. By using this rapid method, it will be
possible to find better member grouping options
than the proposed ones in the documented methods.
In that case, economical and practical solutions can
be found. This issue will be considered in the future
studies.

TABLE VIII. THE OPTIMUM RESULTS OF THE 200-BAR STRUCTURE
Element HS GA sap]  "PSAC Lspg TLBO csp HPSO TLBO FPA  Present
group [13] [4] 0[23] [15] [18] [17] [16] [21] study
1 01253  0.3469  0.1468 01033  0.1540 01460 01480 01213 01135  0.1425 0.1069
2 10157 10810 09400 09184 09410 09410 009460 09426 09484  0.9637 0.9154
3 01069 01000  0.1000 01202 01000 01000 01010 01220  0.1078  0.1005 0.2094
4 01096  0.000 01000 01009 01000 01010 01010 01000  0.1000  0.1000 0.1000
5 19369 21421 19400  1.8664 19420  1.9410 19461 20143 19345 19514 1.9154
6 02686 03470 02962  0.2826 03010 02960 02979 02800  0.2889  0.2957 0.3175
7 01042 01000  0.1000  0.1000 01000 01000 01010  0.1589 02116  0.1156 0.1006
8 29731 35650  3.1042 29683 31080 31210  3.1072  3.0666  3.0903  3.1133 3.1105
9 01309 03470  0.1000 01000 01000 01000  0.010 01002 01031  0.1006 0.1007
10 41831 48050  4.1042 39456 41060  4.1730 41062  4.0418  4.0903  4.1100 4.1138
11 03967  0.4400 04034 03742 04090 04010 04049 04142 04502  0.4165 0.4102
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12 0.4416 0.4400 0.1912 0.4501 0.1910 0.1810 0.1944 0.4852 0.1007 0.1843 0.1571
13 5.1873 5.9520 5.4284 4.9603 5.4280 5.4230 5.4299 5.4196 5.4798 5.4567 5.4243
14 0.1912 0.3470 0.1000 1.0738 0.1000 0.1000 0.1010 0.1000 0.1011 0.1000 0.1000
15 6.2410 6.5720 6.4284 5.9785 6.4270 6.4220 6.4299 6.3749 6.4798 6.4559 6.4332
16 0.6994 0.9540 0.5734 0.7863 0.5810 0.5710 0.5755 0.6813 0.5329 0.5800 0.5759
17 0.1158 0.3470 0.1327 0.7374 0.1510 0.1560 0.1349 0.1576 0.1325 0.1547 0.2940
18 7.7643 8.5250 7.9717 7.3809 7.9730 7.9580 7.9747 8.1447 7.9445 8.0132 7.9988
19 0.1000 0.1000 0.1000 0.6674 0.1000 0.1000 0.1010 0.1000 0.1005 0.1000 0.1000
20 8.8279 9.3000 8.9717 8.3000 8.9740 8.9580 8.9747 9.0920 8.9444 9.0135 9.0063
21 0.6986 0.9540 0.7049 1.1967 0.7190 0.7200 0.7065 0.7462 0.7011 0.7391 0.8194
22 1.5563 1.7639 0.4196 1.0000 0.4220 0.4780 0.4225 0.2114 1.3777 0.7870 0.4748
23 10.9806 13.3006 10.8636 10.8262 10.8920 10.8970 10.8685 10.9587 11.2394 11.1795 11.1442
24 0.1317 0.3470 0.1000 0.1000 0.1000 0.1000 0.1010 0.1000 0.2287 0.1462 0.1279
25 12.1492 13.3006 11.8606 11.6976 11.8870 11.8970 11.8684 11.9832 12.2394 12.1799 12.1455
26 1.6373 2.1421 1.0339 1.3880 1.0400 1.0800 1.0360 0.9241 1.6849 1.3424 1.1763
27 5.0032 4.8050 6.6818 4.9523 6.6460 6.4620 6.6859 6.7676 4.9136 5.4844 5.9177
28 9.3545 9.3000 10.8113 8.8000 10.8040 10.7990 10.8111 10.9639 9.7190 10.1372 10.3697
29 15.0919 17.1740 13.8404 14.6645 13.8700 13.9220 13.8465 13.8186 15.0219 14.5262 14.2756
Best(\lll\)/)eight 25447.1 28544.0 25445.6 25156.5 25491.9 25488.2 25467.9 25698.9 25664.0 25521.8  25542.98
Number of .
Duration
structural 48000 - 9650 9875 19670 28059 31700 14406 - 10685 e Gg s
analyses '
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