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Abstract: - There exist two main categories of structural uncertainties which include spatial correlation, and 
require the application of random fields. These categories are material and geometrical characteristics. In the 
presented studies, the random field is applied to the modelling of initial curvature of a slender member axis. 
Load-carrying capacity of the compress member is calculated by using geometrically nonlinear solution in the 
programme ANSYS. The solution was carried out by using the beam element BEAM188. The specimen 
application includes the static random response of an imperfect system generated by geometrical imperfections 
of member axes with open and hollow cross-sections. The Latin Hypercube Sampling Method was applied. 
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1 Introduction 
One half wave of the function sinus is a frequently 
applied idealization of real curvature of the axis of a 
slender hot-rolled steel member, although the real 
geometry can be substantially more complicated. 
Model approaches based on one half-wave make 
possible to calculate the solution of the state of 
stress in an analytical form by a close-form formula 
[1,2]. On these assumptions, it is not difficult to 
calculate the load carrying capacity, if the amplitude 
of initial curvature e0 is known. 

The amplitude of initial curvature is a random 
quantity for the identification of which the source 
materials can be found in literature [2, 3]. 

A more detailed method assumes a spatial 
distribution of geometrical or material properties 
and models of this random distribution by a 
continuous field called a random field [4, 5]. In 
combination with the finite element method, this 
approach is generally called the stochastic finite 
element approach [6].  

Modelling of the initial curvature with applying 
the random field is more complicated, and requires 
more input parameters to be identified [7]. 
However, it is not the rule that the initial axis 
curvature must have the shape of sinus function 
half-wave or of random field. Both cases are the 
idealization of real axial generally spatial curvature. 
An explicit solution cannot be obtained for the 
general spatial curvature.  

The present paper deals with modelling the 
member axial curvature based on random fields. The 
random spatial curvature is considered as the initial 
geometrical imperfection which influences the load 
carrying capacity of the member.  

Two symmetrical thin-walled cross sections were 
chosen for computer modelling, namely the open 
and the hollow ones. The stress state of an imperfect 
member under compression is given by pressure, 
bending, and by torsion. The torsion can 
significantly contribute to the increase of the stress 
state, and to the decrease of load carrying capacity 
for slender members with open cross section in 
particular [8]. The warping torsion the influence of 
which on stress state, and load carrying capacity are 
studied, is connected with the stress of members 
having open cross sections. The load carrying 
capacity of compress members was calculated by 
geometrically nonlinear solution in the ANSYS 
software. 
 
 
2 Computational Model 
A two-hinge member was considered, see Fig. 1. 
The length of the member is L = 2.798 m and non-
dimensional slenderness λ = 1.0. Non-dimensional 
slenderness λ  is the parameter applied to design 
and dimensioning of member, defined in the 
standard EUROCODE 3. The parameter λ  is 
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sometimes considered to be a quantity more 
transparent than the member length, because it (the 
parameter) is the function also of the radius of 
gyration about the relevant axis, determined using 
the properties of the gross cross section. 

To the load carrying capacity analysis of the 
compress member, the member element BEAM188 
with seven degrees of freedom was applied which is 
a part of the offer, and is accessible in the ANSYS 
software. Seven degrees of freedom include three 
degrees of freedom corresponding to translations 
along axes x, y, z, other three ones, to rotations 
around these axes, and the 7th degree of freedom 
corresponds to warp. 

The member scheme is in Fig. 1. In the node a, 
translations in directions of all three axes, and the 
rotation about axis x are prevented. 

In the node b, the translations in the direction of 
axes y and z and rotation around axis x are 
prevented. Further on, it is assumed that both end 
cross sections in nodes a and b cannot warp; by this, 
the model approaches a real laboratory experiment. 
The model is subsequently loaded by translation in 
the node b in the direction of axis x. In node a, the 
value of the reaction in direction x is followed to 
determine the load carrying capacity. 
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   Fig.1: Model of steel member. 
 
 
2.1 Cross Section 
In the given problem, two symmetrical square thin-
walled cross sections were used, the first being 
hollow, and the second, open. In the middle of one 
side of open cross section, there is an incision. Both 
cross sections are presented in Fig. 2. The member 
is modelled so that all the points of the centre of 
gravity of cross section lie on the member axis. 
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   Fig.2: Cross sections: a) hollow, b) open. 

The hollow cross section is symmetrical along 
both axes, and thus the position of the centre of 
gravity Cg corresponds to the position of shear 
centre Ss. In open cross section, the position of shear 
centre was shifted to the right, according to Fig. 2 
b). Cross-section characteristics of both cross 
sections are given in Table 1. 

Table 1: Cross section characteristics. 
Characteristic Hollow Open 

Area A 
Second moment of area Iy 
Second moment of area Iz 
Second warping moment Iω 

1.68.10-3 
1.49.10-6 
1.49.10-6 
2.83.10-12 

1.68.10-3 
1.49.10-6 
1.49.10-6 
6.96.10-9 

 
These cross sections are then applied to each 

realization of spatial curvature of member axis (see 
Chapter 2.2). In view of the fact that the initial 
curvature is here independent of the applied profile, 
the open cross section is; rotated into four positions. 
The load carrying capacity of member of the given 
realization is then calculated for five cross sections 
according to Fig. 3. 
 

I) II) III)

IV) V)  
 
   Fig.3: Hollow and open cross sections. 
 
 
2.2 Random Input Variables, Random Field 
The Gauss probability density distribution with 
mean value 297.3 MPa, and with standard deviation 
16.8 MPa was considered for yield point fy [9]. The 
initial curvature of member axis was modelled using 
eleven nodes through which the spline was interlaid, 
see Fig. 4. Each of these nodes had the Gauss 
probability density distribution with zero mean 
value, and with standard deviation 0.0015248 
sin(π⋅xi/L) m, where xi is the position on the member 
axis. The value 0.0015248 was calculated, based on 
the assumption that 95 % realizations of initial 
spatial deformation lay within the tolerance limits 
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±0,15 % L. The values of coordinates in each of the 
two planes are mutually correlated by means of the 
correlation matrix. The correlation matrix defines 
the random field with correlation length 
Lcor = 1.442 m. The correlation is considered among 
the values of coordinates of nodes lying on one 
plane. It means that the curvature on one plane is 
independent of the curvature on the other one. 
Random realizations of yield strengths and initial 
curvature were simulated by applying the method 
Latin Hypercube Sampling [10, 11] using Freet 
software, see http://www.freet.cz/. 
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   Fig.4: Definition of spatial curvature of the axis. 
 

The other parameters of the model were 
considered as deterministic ones, and were taken by 
their nominal values. The Young’s modulus of steel 
E=210GPa and geometrical characteristics of the 
cross section, e.g., are concerned. By loading using 
the method step-by-step, the strength was searched 
for which the maximum value of the von Mises 
stress of the member would be equal to yield 
strength. 60 random realizations of axial curvatures 
of members and 60 random realizations of yield 
strength were simulated. Each realization of axial 
curvature of the member forms a pair with one 
realization of yield point. An example of one 
realization of initial curvature of member axis is 
illustrated in Fig. 5 and Fig. 6. 
 

 
 
   Fig.5: Axis curvature of 1 random run - plane xy. 
 

 
 
   Fig.6: Axis curvature of 1 random run - plane xz. 

3 Stress State and Limit State 
Building structures are usually designed so that 
maximum expected stresses were within the limits 
of linear elasticity, it means that deformation caused 
by internal stress is directly proportional to them. At 
loading, the real imperfect member is in the state of 
spatial stress. For the assessment, it is necessary to 
know when the stress state is approaching the limit 
state of stress in a material. Yield strength fy is 
usually considered to be the limit state of stress for 
structural steel. Combined stresses cannot be 
described by a single vector. For the limit condition, 
there was used the von Mises (Huber, Hencky) 
condition of plasticity in the form. 
 

00 =−= σσf    (1) 
 
where σ  is equivalent stress [Pa], which is  
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  σ0 corresponds to fy, elements σx, σy, σz are 

called orthogonal normal stresses (relative to the 
chosen coordinate system), and τxy, τxz, τyz, 
orthogonal shear stresses. σx is longitudinal stress in 
direction of axis x, σy is longitudinal stress in 
direction of axis y, σz is longitudinal stress in 
direction of axis z. τxy is shear stress on the plane x 
in direction of y, τxz is shear stress on the plane x in 
direction z, τyz is shear stress on the plane y in 
direction z. The analysis of stress can be 
considerably simplified for members that are 
subjected to moderate compressing, bending and 
twisting. When the solution is carried out by 
member model, it is assumed that σy=σz=τyz=0. The 
formula (2) is so reduced to the form 
 

( )222 3 zxxyx ττσσ ++=    (3) 
 

So, the limit state occurs, when yield point fy is 
reached in the maximum stressed point of member. 
 

yf=σ      (4) 
 
 

4 Load Carrying Capacity 
The load carrying capacity values of all sixty 
random realizations of the member are presented in 
Table 2. By Chi-quadrate test of good agreement on 
the significance level 5 %, the hypothesis on 
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normality of distribution for no solved cross-section 
types is rejected. Based on the standard EN1990, the 
design load carrying capacity is calculated as 0.1 
percentile. It corresponds to design reliability index 
βd = 3.8. 0.1 percentile was calculated on 
assumption that the load carrying capacity had the 
Gauss probability density function. 

Table 1: Cross section characteristics. 
Cross 

section 
Mean value 

[kN] 
Variation 
coefficient 

0.1 
percentile 

[kN] 
I 
II 
III 
IV 
V 

326.20 
272.00 
270.95 
271.94 
271.07 

7.69 
6.19 
6.25 
6.34 
6.32 

248.63 
219.98 
218.59 
218.66 
218.10 

 
The design load carrying capacity of the member 

with hollow cross section (cross section I) is – 
according to EUROCODE 3 – 262.29 kN. The 
EUROCODE 3 does not state the design load 
carrying capacity of open cross sections (cross 
sections II, III, IV). 
 
 
5 Conclusion 
The statistical modeling of a structure is usually 
carried out for the purpose of finding the 
probabilistic response, or for reliability assessment. 
In the paper, there was presented the application of a 
random field for modelling initial curvature of the 
member axis.  

Statistical characteristics of load carrying 
capacity evaluated for two cross-section types are 
the result of the study. The Table 1 contains load 
carrying capacities of members with several variants 
of open cross sections, completed by the variant 
with hollow cross section. Mean values and standard 
deviations of members with open cross sections are 
similar. The design load carrying capacity of these 
cross sections is not stated by the standard 
EUROCODE 3 expressly, but in compliance with 
standard proceedings, the curve of buckling strength 
b can be used, and the value of design load carrying 
capacity 235 kN can be obtained. The value 235 kN 
0.1 is higher than all 0.1 percentiles of Gauss 
probability density function, by which the values of 
load carrying capacity of members with open cross 
sections were approximated.  

The design load carrying capacity of members 
with hollow cross section according to 
EUROCODE 3 is 262.29 kN. This value is higher 

than 0.1% quantile of normal distribution, as well. 
The comparison of design value according to 
EUROCODE 3 with the design value obtained as 
0.1 percentile represents the basic principle for 
verification of design reliability. The statistical 
analysis points out that it is necessary to introduce 
more strict standard design values. However, it must 
be verified by experimental research and a further 
probabilistic analysis according to EN1990. 
Random fields are an appropriate instrument for 
research into this phenomenon. 

 
Acknowledgement 
The article was elaborated within the framework of 
project GAČR 14-17997S. 
 
 
References: 
[1] S. Timoshenko, J. Gere, Theory of Elastic 

Stability, McGraw-Hill, New York, 1961. 
[2] Z. Kala, Sensitivity Assessment of Steel 

Members under Compression, Engineering 
Structures, Vol.31, 2009, pp. 1344-1348. 

[3] Z. Kala, Elastic Lateral-torsional Buckling of 
Simply Supported Hot-rolled Steel I-beams 
with Random Imperfections, Procedia 
Engineering, Vol.57, 2013, pp. 504-514. 

[4] C. Bucher, Applications of Random Field 
Models in Stochastic Structural Mechanics, 
Solid Mechanics and its Applications, Vol.140, 
2006, pp. 471-484. 

[5] J. Valeš, Modeling and Simulation of Random 
Fields in Stability Problems of Compressed 
Members, In Proc. of the 21st International 
Conference on Soft Computing MENDEL2015, 
Brno (Czech Republic), 2015, pp. 217-222. 

[6] H.G. Matthies, Ch.E. Brenner, Ch.G. Bucher, 
C.G. Soares, Uncertainties in Probabilistic 
Numerical Analysis of Structures and Solids - 
Stochastic Finite Elements, Structural Safety, 
Vol.19, No. 3, 1997, pp. 283-336. 

[7] J. Valeš, The Influence of Random Initial Axis 
Curvature of Compression Steel Slender 
Member on its Load Carrying Capacity, In 
Proc. of the 18th International Conference on 
Soft Computing MENDEL2012, Brno (Czech 
Republic), 2012, pp. 387-392. 

[8] J. Freund, A. Karako, Warping Displacement 
of Timoshenko Beam Model, International 
Journal of Solids and Structures, Vol.92-93, 
2016, pp. 9-16. 

[9] J. Melcher, Z. Kala, M. Holický, M. Fajkus, L. 
Rozlívka, Design Characteristics of Structural 
Steels Based on Statistical Analysis of 

Jan Valeš, Zdenek Kala
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 262 Volume 1, 2016



 

 

Metallurgical Products, Journal of 
Constructional Steel Research, Vol.60, No.3-5, 
2004, pp. 795-808. 

[10] M. D. McKey, R. J. Beckman, W. J. Conover, 
A Comparison of the Three Methods of 
Selecting Values of Input Variables in the 
Analysis of Output from a Computer Code, 
Technometrics, Vol. 21, 1979, pp. 239-245. 

[11] R. C. Iman, W. J. Conover, Small Sample 
Sensitivity Analysis Techniques for Computer 
Models with an Application to Risk 
Assessment, Communications in Statistics – 
Theory and Methods, Vol.9, No.17, 1980, pp. 
1749-1842. 

Jan Valeš, Zdenek Kala
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 263 Volume 1, 2016




