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Abstract: This work proposes an exact general three-dimensional shell model for the free vibration anal-
ysis of advanced structures. The equilibrium equations are written in general orthogonal curvilinear
coordinate system valid for plates and shells with constant radii of curvature. The model is developed in
layer-wise form in the case of multilayered structures, and a closed form solution is provided supposing
simply supported edges. The partial differential equations in z are solved by means of the exponential
matrix method which is stable and not expansive from the computational point of view. The equilibrium
equations are written for the general case of spherical shells and they automatically degenerate in the
cylindrical and flat panel cases considering one or both radii of curvature equals zero, respectively. Re-
sults are proposed for single- and multi-layered isotropic, orthotropic, composite and functionally graded
structures, and for single- and multi-walled carbon nanotubes.

Key–Words: Exact three-dimensional shell model, shell structures, free vibrations, vibration modes,
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1 Introduction

Three-dimensional exact models for plates and
shells have been developed by several researchers,
and they have received considerable attention in
the past few decades. Plate and shell elements are
fundamental geometries in the analysis of general
structures in several engineering fields. There-
fore, an accurate validation is fundamental for
plate and shell elements. Such validations and
checks can be made using three-dimensional ex-
act solutions. These solutions also allow the in-
vestigation of details about three-dimensional ef-
fects and their importance. In the open litera-
ture, papers concerning exact three-dimensional
solutions separately analyze the various geome-
tries without giving a general overview for plate
and shell elements. The present method tries to
fill this gap developing a general formulation for
the equations of motion written in general orthog-
onal curvilinear coordinates. This formulation is
valid for square and rectangular plates, cylindri-
cal shell panels, spherical shell panels and cylin-
ders. Different materials can be included in the
proposed structural model: isotropic, orthotropic,
composite and functionally graded materials, and
equivalent elastic properties for carbon nanotube
analysis after opportune considerations about the

possibility of considering a continuum approach
for such discrete structures. All these possibilities
give a general overview for those readers inter-
ested in both plate and shell analyses. The equa-
tions of motion (in general curvilinear orthogo-
nal coordinates including an exact geometry for
shell structures without simplifications) are ex-
actly solved.

The most relevant works in the literature
about three-dimensional analysis separately con-
sider plate and shell geometries. Examples of
three-dimensional shell models are given in [1]-
[17], while three-dimensional analyses of plates
are usually performed using simpler equations
which do not allow the analysis of shell geome-
tries (see works [18]-[40]).

The literature proposed in the previous part
about 3D plate and shell analyses shows a large
variety of papers concerning plate or shell ge-
ometry. Considered topics were static and dy-
namic analysis, functionally graded, composite
and piezoelectric materials, models based on dis-
placement or mixed formulations. This new 3D
model proposes a general formulation for several
geometry types (square and rectangular plates,
cylindrical and spherical shell panels, and cylin-
drical closed shells). The equations of motion
given in general orthogonal curvilinear coordi-
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nates use an exact geometry for shells. The ob-
tained system of second order differential equa-
tions in z is reduced to a system of first order
differential equations in z. After this reduction,
the system is solved using the exponential matrix
method. This method has been used by Messina
[25] in the case of plates in rectilinear orthogonal
coordinates, and by Soldatos and Ye [7] for angle-
ply laminated cylinders in cylindrical coordinates.
The equations of motion here written in orthog-
onal curvilinear coordinates allow general exact
solutions for plates and shell geometries with con-
stant radii of curvature.

The method will be presented in Section 2 and
it allows the free vibration analysis for one-layered
and multilayered isotropic, orthotropic and com-
posite structures [41]-[44], for one-layered and
multilayered functionally graded structures [45],
[46], and for single-walled and double-walled car-
bon nanotubes [47], [48]. Some of these results
are proposed and discussed in Section 3, however
a complete overview can be found in [41]-[48]. The
main conclusions and the possible future develop-
ments are given in Section 4.

2 Three-dimensional exact shell

model

The equilibrium equations are proposed in a gen-
eral orthogonal curvilinear coordinate system (α,
β, z) valid for plates and shells with constant radii
of curvature. These equations can be solved in ex-
act form by means of simply supported boundary
conditions and the use of the exponential matrix
method for the solution of the differential equa-
tions in z. The three differential equations writ-
ten for the free vibration analysis of multilayered
spherical shells (embedding NL layers) with con-
stant radii of curvature Rα and Rβ are:
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in above equations, ρk indicates the mass den-
sity, (σk
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αβ) are the six stress

components, ük, v̈k and ẅk are the second tem-
poral derivatives of the displacements uk, vk and
wk considered through α, β and z directions, re-
spectively. Each quantity has a dependence from
the k physical layer. Rα and Rβ are the radii of
curvature evaluated in the mid-surface Ω0 of the
whole multilayered structure. Parametric coeffi-
cients Hα and Hβ for shells with constant radii
of curvature continuously vary through the thick-
ness direction z of the multilayered structure:

Hα = (1 +
z

Rα
),Hβ = (1 +

z

Rβ
),Hz = 1. (4)

Shells and plates are considered as simply
supported. Therefore, the three displacement
components are written in harmonic form:

uj(α, β, z, t) = U j(z)eiωtcos(ᾱα)sin(β̄β), (5)

vj(α, β, z, t) = V j(z)eiωtsin(ᾱα)cos(β̄β), (6)

wj(α, β, z, t) = W j(z)eiωtsin(ᾱα)sin(β̄β). (7)

U j(z), V j(z) andW j(z) are the displacement am-
plitudes in α, β and z directions, respectively. i
is the imaginary unit. ω = 2πf is the circular
frequency with f as frequency value in Hz. t
is the time. ᾱ = mπ

a
and β̄ = nπ

b
, where m

and n are the half-wave numbers and a and b
are the shell dimensions in α and β directions,
respectively (evaluated at the mid-surface Ω0).
j indicates the mathematical layers used to ap-
proximate the curvatures and/or the functionally
graded laws in each k physical layer. The substi-
tution of equations (5)-(7) and constitutive and
geometrical equations (here omitted but given in
details in [45]) in equations (1)-(3) leads to the
final system.

The compact form of this system is (all the
omitted details can be found in [45]):

D
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Equation (8) can be rewritten as:
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with A
j∗ = D

j−1
A

j .
Equation (11) can be solved, as already done

in [45], by means of the exponential matrix
method:

U
j(zj) = exp(Aj∗zj)U j(0) with zj ǫ [0, hj ] ,

(12)
zj is the thickness coordinate for each j layer.
It goes from 0 at the bottom to hj at the top.
The exponential matrix must be calculated for the
solution of the system using zj = hj for each j
layer:

A
j∗∗ = exp(Aj∗hj) = I +A

j∗ hj + (13)

A
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2
+
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where I is the 6 × 6 identity matrix. This ex-
pansion has a fast convergence and it is not time
consuming from the computational point of view
as demonstrated in the past author’s works [41]
-[48].

j = M mathematical/fictitious layers must be
used to approximate the shell curvature and/or
the functionally graded law. M − 1 transfer ma-
trices are calculated by means of the interlaminar
continuity conditions of displacements and trans-
verse shear/normal stresses. Simply supported
plates or shells must be considered to obtain a
closed form solution. Such structures are also
considered as free stresses at the top and at the
bottom surfaces. Using all these conditions, the
following final system is obtained:

EU
1(0) = 0 , (14)

matrix E has (6 × 6) dimension, independently
from the number of layers M and from the use
of a layer-wise method. U

1(0) is defined as U

written at the bottom of the whole multilayered
structure (first layer 1 with z1 = 0). All the alge-
braic steps not written in this work can be found
in [41] -[48] where this 3D exact solution has been
developed for the first time and applied to differ-
ent benchmarks. The model has been extensively
validated in [41] -[48], and it can be now used with
confidence for the frequency comparisons shown
in Section 3 about plates, cylinders, cylindrical
shells, spherical shells and carbon nanotubes.

The free vibration analysis means the non-
trivial solution of U1(0) in equation (14). There-
fore, the determinant of matrix E is imposed
equal to zero:

det[E] = 0 . (15)

The above evaluation allows to calculate the roots
of an higher order polynomial in λ = ω2. A couple

of half-wave numbers (m,n) is imposed to obtain
a number of circular frequency values ω = 2πf
(theoretically, from I to ∞). This number of fre-
quencies depends on the order N for the expo-
nential matrix A

j∗∗ and on the number M of fic-
titious/mathematical layers used for the approxi-
mation of shell curvatures and FGM laws. In all
the cases proposed in [41] -[48], N = 3 for the
exponential matrix and M = 100 or M = 102
for the mathematical layers (the choice depends
on the number of physical layers embedded in
the structure in order to opportunely divide the
thickness and physical layers of the considered
structure) have been used for the analysis of one-
layered and multi-layered isotropic, orthotropic,
composite and functionally graded structures. In
the case of carbon nanotubes, N = 3 for the ex-
ponential matrix and M = 228 for mathematical
layers are used. The higher M value proposed for
carbon nanotubes is due to the higher stiffness
and higher thickness of such equivalent continuum
structures. The N and M values here discussed
are always sufficient to calculate the correct re-
sults in Section 3 for each geometry, lamination
sequence, number of layers, material, thickness
ratio, vibration mode, frequency order and half-
wave numbers.

3 Some results

Several benchmarks, which can be solved by
means of the 3D exact shell model above pre-
sented, are here given. A complete overview will
be given at the conference and can also be found
in [41] for one-layered plates and shells, in [42]-[44]
for multilayered composite and sandwich struc-
tures, in [45], [46] for functionally graded plates,
cylinders, cylindrical and spherical shells, and in
[47] and [48] for single-walled and double-walled
(also including van derWaals interaction) carbon
nanotubes, respectively.

The first presented benchmark considers the
free vibration analysis of a composite plate with
thickness ratio a/h = 10 (a = b = 10m). Each
composite layer has Young modulus components
E1 = 25.1 × 106psi, E2 = 4.8 × 106psi and
E3 = 0.75 × 106psi, shear modulus components
G12 = 1.36 × 106psi, G13 = 1.2 × 106psi and
G23 = 0.47 × 106psi, Poisson ratio components
ν12 = 0.036, ν13 = 0.25 and ν23 = 0.171. The
mass density value is ρ = 0.054191 lb/in3 . The
first three vibration frequencies are proposed in
Table 1 in non-dimensional form ω̄ = ωh

√

ρ/E2

for half-wave numbers (m,n) equals (1,1), (1,2),
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(2,1) and (2,2). Two-layered, three-layered and
four-layered composite plates are analyzed for
lamination sequences (0◦/90◦), (0◦/90◦/0◦) and
(0◦/90◦/0◦/90◦) (each layer has the same thick-
ness). The first three modes (indicated as I, II
and III) are calculated for each (m,n) couple. The
proposed three-dimensional results are very sim-
ilar to those calculated by Messina [25] for each
imposed half-wave number, lamination sequence
and considered mode. This validation is impor-
tant because the proposed three-dimensional so-
lution extended to general orthogonal curvilinear
coordinates uses the same methodology applied
by Messina [25] to plates with orthogonal recti-
linear coordinates.

Mode I Mode II Mode III (m,n)

0◦/90◦

3D[25] 0.060274 0.52994 0.58275 (1,1)
Present 3D 0.060274 0.52994 0.58275 (1,1)
3D[25] 0.14539 0.62352 0.95652 (1,2)
Present 3D 0.14538 0.62352 0.95652 (1,2)
3D[25] 0.14539 0.62352 0.95652 (2,1)
Present 3D 0.14538 0.62352 0.95652 (2,1)
3D[25] 0.20229 0.95796 1.0300 (2,2)
Present 3D 0.20229 0.95796 1.0300 (2,2)

0◦/90◦/0◦

3D[25] 0.067147 0.50349 0.63775 (1,1)
Present 3D 0.067147 0.50349 0.63775 (1,1)
3D[25] 0.12811 0.6888 0.95017 (1,2)
Present 3D 0.12811 0.6888 0.95017 (1,2)
3D[25] 0.17217 0.58366 1.1780 (2,1)
Present 3D 0.17217 0.58366 1.1780 (2,1)
3D[25] 0.20798 0.97517 1.2034 (2,2)
Present 3D 0.20798 0.97517 1.2034 (2,2)

0◦/90◦/0◦/90◦

3D[25] 0.066210 0.54596 0.59996 (1,1)
Present 3D 0.066210 0.54596 0.59995 (1,1)
3D[25] 0.15194 0.63875 1.0761 (1,2)
Present 3D 0.15194 0.63875 1.0761 (1,2)
3D[25] 0.15194 0.63875 1.0761 (2,1)
Present 3D 0.15194 0.63875 1.0761 (2,1)
3D[25] 0.20841 1.0623 1.1557 (2,2)
Present 3D 0.20841 1.0623 1.1557 (2,2)

Table 1: First case: simply supported multilay-
ered composite square plate.

The second case considers a simply supported
cylindrical shell panel. The shell has the two in-
plane dimensions a = b. The thickness ratio is
a/h equals 5. Two different radii of curvature Rα

are proposed: a/Rα equals 0.5 or 1. The radius of
curvature Rβ is infinite. The shell is one-layered
and it is made of a functionally graded material
(FGM) which is full metallic at the bottom and

full ceramic at the top. Young modulus and mass
density continuously vary through the thickness
direction z in accordance with:

E(z) = Em + (Ec −Em)Vc , (16)

ρ(z) = ρm + (ρc − ρm)Vc , (17)

where the volume fraction of the ceramic phase
Vc is:

Vc = (0.5 + z/h)p . (18)

The metallic (m) material has Young modulus
Em = 70GPa, mass density ρm = 2702kg/m3 and
Poisson ratio νm = 0.3. The ceramic (c) mate-
rial has Young modulus Ec = 380GPa, mass den-
sity ρc = 3800kg/m3 and Poisson ratio νc = 0.3.
These material data can also be found in Za-
hedinejad et al. [49], where a three-dimensional
differential quadrature method was proposed for
the free vibration analysis of the FGM cylindrical
panel for imposed half-wave numbers m = n = 1
and for several exponent values p in the volume
fraction. The results are given as non-dimensional

circular frequencies ω̄ = ωh
√

ρc
Ec

. Table 2 shows

that the present three-dimensional exact model
gives similar results to those obtained using the
method proposed by Zahedinejad et al. [49]. The
minor differences are due to the fact that the
present 3D model is given in exact form while
the 3D model in [49] is proposed using a numer-
ical method such as the differential quadrature
method.

p 0.5 1.0 4.0 10

a/Rα = 0.5
Numerical 3D [49] 0.1814 0.1639 0.1367 0.1271
Present 3D 0.1817 0.1638 0.1374 0.1296

a/Rα = 1.0
Numerical 3D [49] 0.1852 0.1676 0.1394 0.1286
Present 3D 0.1848 0.1671 0.1392 0.1300

Table 2: Second case: simply supported one-
layered FGM cylindrical shell panel.

The third benchmark is proposed in Table 3
where a simply supported spherical shell panel is
investigated. The shell has constant radii of cur-
vature Rα = Rβ = 10m, thickness h = 0.2m
and dimensions a = b = 2m. The multilay-
ered structure includes NL layers, and each layer
has the same thickness. The lamination sequence
is (0◦/90◦/0◦/90◦/ . . .). The results are calcu-
lated and proposed as non-dimensional circular
frequency ω̄ = ωRβ

√

ρ/E0. Each composite
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layer has Young modulus components E1 = 25E0

and E2 = E3 = E0, shear modulus components
G12 = G13 = 0.5E0 andG23 = 0.2E0, and Poisson
ratio components ν12 = ν13 = ν23 = 0.25. The
mass density is ρ = 1500kg/m3. Table 3 shows
the first fundamental mode for different imposed
half-wave numbers (m,n). The three-dimensional
solution proposed by Huang [4] is coincident with
the present three-dimensional analysis for each
couple of half-wave numbers (m,n) and for each
considered number of layers (NL).

m,n mode 3D[4] Present 3D

NL = 2
1,1 I 4.6238 4.6240
1,2 I 10.753 10.753
1,3 I 19.130 19.130
2,1 I 10.864 10.864
2,2 I 14.909 14.909
2,3 I 21.961 21.961
3,1 I 19.315 19.315
3,2 I 22.053 22.053
3,3 I 27.483 27.483

NL = 4
1,1 I 5.8070 5.8070
1,2 I 12.134 12.134
1,3 I 19.846 19.845
2,1 I 12.188 12.188
2,2 I 16.298 16.298
2,3 I 22.719 22.719
3,1 I 19.932 19.931
3,2 I 22.757 22.757
3,3 I 27.790 27.790

NL = 10
1,1 I 6.2293 6.2293
1,2 I 13.050 13.050
1,3 I 21.042 21.042
2,1 I 13.076 13.076
2,2 I 17.432 17.432
2,3 I 24.027 24.027
3,1 I 21.082 21.081
3,2 I 24.045 24.045
3,3 I 29.189 29.189

Table 3: Third case: simply supported multilay-
ered composite spherical shell panel.

The fourth and last case considers a sim-
ply supported Single-Walled CarbonNanotube
(SWCNT). The equivalent elastic cylinder has
properties as calculated in Simsek [50]. The
equivalent Young modulus is E = 1TPa with
Poisson ratio ν = 0.3. The relative effective thick-
ness considered for this Young modulus value is
h = 0.35nm. The mass density is ρ = 2300kg/m3 .
The external diameter of the cylinder is de =
1nm. This value allows a ratio de/h=2.86 which

usually requests the use of beam models. In
fact, some difficulties may arise when classical
2D shell models are employed for the analysis of
these cylinder types. The use of very refined 2D
shell models or 3D exact shell models is manda-
tory for these problems. The radius of curva-
ture in α direction, referred to the mid-surface,
is Rα = de/2 − h/2 = 0.325nm. The dimension
in α direction is a = 2πRα and the b dimen-
sion can be L = 5nm, 10nm, 20nm, 50nm and
100nm for ratios L/de = 5, 10, 20, 50 and 100,
respectively. Table 4 gives the first three circular

frequency values ω̄ = ωL2

√

ρA
EI

(where A is the

area of the ring and I is the moment of inertia
of the ring) for short and long simply supported
cylinders changing L/de ratios. The first three
non-dimensional circular frequency values are cal-
culated for half-wave number in α direction p=2
and half-wave numbers q in β direction set to 1,
2 and 3. Beam models correctly work for long
and moderately long cylinders. On the contrary,
shell models calculate correct results for both long
and short cylinders. The Euler-Bernoulli Beam
Model (EBM) in Table 4 was proposed in Simsek
[50] and Aydogdu [51] for the first three frequen-
cies when L/de=10, 20 and 50. The same cases
were also calculated in [51] using the Timoshenko
Beam Model (TBM). TBM gives more accurate
results than EBM because it includes the effects of
transverse shear deformation and rotary inertia.
However, TBM shows some problems for second
and third frequency in the case of short SWC-
NTs (L/de=10). The 3D shell model gives satis-
factory results for both long and short SWCNTs
and it also allows a correct free vibration anal-
ysis of cylinders with small diameter/thickness
ratios. For these small ratios, classical 2D shell
models could exhibit some difficulties. Table 4
shows that the TBM gives similar results to the
3D shell model, while the EBM has larger differ-
ences. The TBM has some difficulties for short
SWCNTs. Additional results using the 3D shell
model are included in Table 4 for very short and
very long SWCNTs (these results were not ob-
tained in [50] and [51] via beam models). These
additional results give a complete overview of the
SWCNT behavior and they can be used as further
benchmarks for the validation of future 1D beam
and 2D classical and refined shell models. Scien-
tists involved in beam and shell model analyses
of SWCNTs can try to complete this table using
their models.
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mode (p,q) 3D Shell* EBM[50],[51] TBM[51]

L/de = 5
I (2,1) 9.3481 . . . . . .
II (2,2) 32.917 . . . . . .
III (2,3) 63.917 . . . . . .

L/de = 10
I (2,1) 9.7295 9.8696 9.7443
II (2,2) 37.392 39.478 36.841
III (2,3) 79.361 88.826 57.450

L/de = 20
I (2,1) 9.8356 9.8696 9.8381
II (2,2) 38.918 39.478 38.964
III (2,3) 86.072 88.826 85.748

L/de = 50
I (2,1) 9.8638 9.8696 9.8645
II (2,2) 39.392 39.478 39.398
III (2,3) 88.375 88.826 88.415

L/de = 100
I (2,1) 9.8487 . . . . . .
II (2,2) 39.488 . . . . . .
III (2,3) 88.752 . . . . . .

Table 4: Fourth case: simply supported single-
walled carbon nanotube. * Present 3D.

4 Conclusions

The paper has proposed a general three-
dimensional exact shell model based on the differ-
ential equations of equilibrium written in general
orthogonal curvilinear coordinates. These exact
equations are valid for simply supported spherical
shells and they automatically degenerate in exact
equations for simply supported cylinders, cylin-
drical panels and plates. A layer wise approach
is employed in the case of multilayered structures
and the system of partial differential equations
is solved using the exponential matrix method.
Such equations allow the free vibration analysis
of several geometries including different materials
such as isotopic, orthotropic, composite and func-
tionally graded ones. Single-walled and double-
walled carbon nanotubes can also be analyzed
after an opportune identification of the equiva-
lent continuum elastic properties. Future devel-
opments will consider the static analysis with the
appropriate calculations of the three-dimensional
displacement, stress and strain states.
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