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Abstract: Undular internal bores appear in oceans as an intermediate stage of internal tidal wave evolution. We 

study nonlinear disintegration of long sine wave in the framework of the Gardner equation (extended version of 

the Korteweg – de Vries equation with both quadratic and cubic nonlinear terms) which is actively applied in 

physical oceanography. We carried out numerical modeling of long sine wave evolution for different signs of 

the cubic nonlinear term and different initial amplitudes to demonstrate its principal features. The focus of the 

study is made on spectral and statistical analysis of generated wave field. If cubic nonlinearity is positive and 

amplitude of sine wave is large enough, soliton-like impulses of both polarities are generated and their 

interactions may result in the formation of extreme amplitude waves. Statistical analysis of wave heights in 

time shows permanent exceedance somewhere in the wave field of the level of two significant wave heights 

(criterion for freak wave appearance). 
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1 Introduction 
Undular bores are very often observed in estuaries 

and river mouths during a tide circle, when long 

tidal wave entering shallow waters. Brilliant 

collection of undular bores’ observations can be 

found in the book [1]. Also, they were observed 

during the 1983 Japan Sea tsunami [2] and 2004 

Indian Ocean tsunami [3]. In general, the criterion 

of undular bore formation is a relationship between 

bore height H, measured from the bottom, and 

unperturbed depth of reservoir h: H < 1.5h. 

Recently, this criterion has been revised in [4].  

Undular bores are also very often observed in the 

stratified ocean as the vertical displacements of the 

pycnocline lied on depth 50-200 m and manifested 

on the ocean surface as the slicks of various 

intensity, see for instance, [5]. Similar phenomenon 

is observed also in lakes [6]. Sometimes internal 

undular bore is called as a solibore after [7]. 

The undular bore is generated in systems with 

weak dispersion and in the presence of nonlinearity, 

for example, when the initial disturbance is very 

long or due to “dam-break” process. Simplified 

model of such phenomenon is based on the famous 

Korteweg-de Vries equation with initial condition in 

the form of the “dam-break”. 

In the present paper we would like to study the 

evolution of the long sine wave in the framework of 

the non-dimensional Gardner equation with 

different signs of cubic nonlinearity. This problem is 

of practical interest because degeneration of the 

long tidal wave is often responsible for generation 

of intense undular bores, often observed in the 

mouths and estuaries. These waves contain huge 

energy, so they are a major source of sediment 

transport, resuspension as well as turbulent mixing 

in the water column. Such waves have a significant 

influence on the propagation of sound in the water 

column and on the formation of the bottom sound 

channel. Another interesting aspect of the solibores’ 

studying is the fact that extreme amplitude pulses 

may be generated in the process of their evolution 

under certain conditions. Main goal of this study is 

to carry out spectral and statistical analysis of long 

sine wave degeneration at various times in the 

framework of Gardner equation. 

 

2 Theoretical model 
We will use the canonical form of the Gardner 

equation with positive or negative sign of cubic 

nonlinearity term: 
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where L – length of the computational domain, and 

amplitude of the wave A ranged from 0.1 to 3 

dimensionless units. 

To solve the problem (1), (2) we use a numerical 

code based on the implicit pseudo-spectral method 

[8], which allows us to save the integrals defined by 

expressions (it is obvious that limits of integration 

are the computational domain boundaries in 

numerical model): 

 
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 dxE 2η .                (3) 

Numerical code, that we use, repeatedly was 

verified in simulation of wave processes of different 

nature (see, eg, [9, 10]). 

The periodic solutions (“cnoidal” waves) of the 

Gardner equation can be found in [11]. The solitons 

of this equation are very good studied also [12 – 14] 

and their properties depends on values of nonlinear 

and dispersion coefficients.  

In the present paper we eliminate the real values 

of the coefficients of the Gardner equation using 

appropriated scaling. But in context of the various 

physical applications it can be necessary to 

introduce they into practice. 

To move on from the canonical form of the 

Gardner equation (1) to the dimensional Gardner 

equation, it is necessary to carry out the change of 

variables: 
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where α – coefficient of quadratic nonlinearity, α1 – 

coefficient of cubic nonlinearity, β – coefficient of 

dispersion. 

The analytical one-soliton solution of Gardner 

equation is well known:  
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The soliton nonlinear velocity V = 
2
 is 

expressed through the inverse width of the soliton . 

The parameters A and B depend on the coefficients 

of Gardner equation and determine the soliton 

amplitude a as the extreme value of the function (x, 

t): 
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The parameters of the family of solutions can 

also be expressed through its amplitude a: 
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There are different branches of the soliton solutions 

depending on the signs of coefficients at the 

nonlinear terms, see Fig. 1. 

 

 
Fig. 1. Shapes of soliton solutions to Gardner 

equation for different combinations of the signs of 

coefficients at its nonlinear terms (idea of 

representation by R.Grimshaw, E. Pelinovsky & T. 

Talipova) 

 

 
Fig. 2. The soliton length versus its amplitude: solid 

line – Gardner equation, dashed line – Korteweg – 

de Vries equation 

 

Let us briefly describe the properties of solitary 

waves for positive sign of the quadratic nonlinear 

term (In opposite case, the polarity of soliton should 

be changed). If cubic nonlinear term is negative, the 

solitons have positive polarity. The soliton height 

has the limited value 

1

lim
α

α
a ,                            (8) 

which is equal to 1 for canonical form (1), and it 

presents the table soliton. The soliton width is 

varied non-monotonically with amplitude increase 

(Fig. 2). The soliton with amplitude 0.5 has a 

minimal width. For amplitude less than this value 

Oxana Kurkina et al.
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 206 Volume 1, 2016



the Korteweg – de Vries equation is a good model to 

describe soliton parameters. Solitons with height 

exceeded 0.8 - 0.9 can be considered as “table” 

solitons.  

In the case of positive cubic nonlinear term there 

are two branches of solitary waves. The first branch 

has the polarity determined by sign of α, and its 

amplitude can be arbitrary with no limited 

amplitude (within the applicability of Gardner 

equation). The second branch describes the solitons 

of alternative polarity. The soliton amplitude of this 

branch exceeds the minimal value corresponded the 

so called algebraic soliton amplitude (which is equal 

to -2 for canonical Gardner equation (1)) 

1

alg
α

α2
a .                         (9) 

 

3 Nonlinear disintegration of sine 

wave 
The scenario for evolution of small-amplitude long 

harmonic waves in the case of negative as well as 

positive values of cubic nonlinear term in the 

Gardner equation has many features in common 

with the process of disintegration such an impulse in 

the framework of the Korteweg-de Vries equation, 

see, for instance [15, 16]. The snapshots of 

evolution of wave (2) with amplitude A = 0.1 

dimensionless units and negative cubic nonlinearity 

are shown in Fig. 3.  

 
Fig. 3 Snapshots of wave dynamics with A = 0.1 

and negative cubic nonlinear term for the Gardner 

equation  

 

After a time, one of the fronts becomes steeper 

due to nonlinearity, and cnoidal waves of variable, 

decreasing linearly amplitudes are generated on it. 

These waves interact with each other because of the 

periodicity of the boundary condition. These 

interactions lead to a negative phase shift and 

decreasing of waves’ velocity as in the case of two-

soliton interaction such as overtaking. But 

amplitudes of the resulting impulse in the moment 

of the interaction is less than the amplitude of 

cnoidal wave with greater amplitude.  

The Fourier spectra of the evolving wave in 

terms of coefficients Cj: 
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(we use discrete set of N harmonics (k)) are 

presented in Fig. 4. Due to nonlinear steepness of 

initial sine wave, the spectrum on small time has the 

breaking asymptotic j
-4/3

 for approximately 20 

harmonics which is common features of nonlinear 

hyperbolic systems with weak dispersion [17, 18]. 

Then, forming of undular bore leads to generation of 

several spectral peaks in range 10-100 harmonics 

downshifting with time. The energy of the basic 

harmonics is decreased transferring the energy in 

high harmonics. The variable amplitude cnoidal-like 

structure of undular bore is not strongly periodic 

that leads to the wide overlapping peaks. 

 
Fig. 4. Spectrum of wave records for A = 0.1 and 

negative cubic nonlinearity at different times.  

 

In more detail the evolution of small-amplitude 

sine waves is analyzed in [19]. 

Cubic nonlinear effects become noticeable with 

increasing amplitude. When the amplitude of initial 

wave amounts to 0.5 dimensionless units and the 

cubic nonlinear term is negative, the “breaking” 

point shifts to the trough. If cubic nonlinear term is 

positive and A = 0.5 the “breaking” point shifts to 

the wave crest (Fig. 5). In both cases envelope of 

wave crests becomes parabolic. It is worth noting 
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that there are many nonlinear interactions of waves, 

that are similar to “overtaking”, if cubic nonlinearity 

is negative. But if cubic nonlinearity is positive, 

scenario of “exchange” takes place. 

 
Fig. 5 Snapshots of wave dynamics with A = 0.5 

and positive cubic nonlinear term for the Gardner 

equation  

 

Spectra of sine wave evolution have much in 

common for such amplitude and negative or positive 

cubic nonlinearity, therefore only graph for the latter 

case is given (Fig. 6). The spectra for this run are 

wider due to increased nonlinearity. Positive cubic 

nonlinearity accelerates the generation of higher 

harmonics in comparison with negative cubic 

nonlinearity. But again qualitatively, the shape of 

spectra are the same as in previous case with 

spectral peaks downshifting with time. The spectra 

after t = 10 are equidistant (with peaks on harmonics 

with multiple numbers). 

 
Fig. 6. Spectrum of wave records for A = 0.5 and 

positive cubic nonlinearity at different times. 

Exceedance probability distribution of wave 

heights over time is shown in Fig. 7 separately for 

positive and negative parts of the wavefield. 

Significant wave height, which is defined as: 

Hs = 4 ,                                   (11) 

where σ is the standard deviation of ordinates , Hs 

is indicated by the black line. Substantial asymmetry 

of negative and positive values of  is demonstrated 

by this plot. 

 

 
Fig. 7. Exceedance probability distribution of 

ordinates for A = 0.5 and positive cubic nonlinearity 

at various moments in time. Black line – significant 

height. 

 

Further amplitude increasing in the case of 

negative cubic nonlinearity causes appearance of 

second breaking point and generation of one table-

top soliton with a group of solitary-like waves at the 

leading edge of the bore. Small solitons run on the 

crest of the table-top soliton and change their 

polarity. This process is described in detail in paper 

[19]. 

If the coefficient of cubic nonlinearity is positive 

and amplitude of initial wave amounts to A = 1.5 

dimensionless units, a second “breaking” point 

appears and the pulses of both positive and negative 

polarity are generated. This process is demonstrated 

in Fig 8. Interactions of waves of opposite polarities 

result in an increase of the maximum amplitude of 

the wave field. 

The spectra are qualitatively similar to those 

shown above but are significantly wider (Fig. 9). 

After t = 2 they contain almost equidistant peaks 

corresponding to multiple numbers of harmonics. 

Statistical analysis of the wave field is shown in 

Fig. 10. Even in the case of A = 1.5 the wave 
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interactions cause appearance of impulses with 

amplitude greater than significant wave height. 

 

 
Fig. 8 Snapshots of wave dynamics with A = 1.5 

and positive cubic nonlinear term for the Gardner 

equation 

 

 
Fig. 9. Spectrum of wave records for A = 1.5 and 

positive cubic nonlinearity at different times. 

 

Nonlinear interactions of pulses of opposite 

polarities are more intense with increasing of initial 

sine wave amplitude. So to study the possible 

mechanisms of generating of extreme waves in the 

canonical Gardner equation with a positive cubic 

nonlinearity we increase the amplitude of sine 

impulse to a value A = 3 dimensionless units. The 

process of undular bore development and generation 

of wave field, which is represented interactions of 

ensembles of positive and negative polarity solitons, 

is shown in Fig. 11 for this initial amplitude. 

One can see in Fig. 12 for exceedance 

probability distribution of wave heights, that large 

values of  are observed when paired collisions of 

different polarities solitons began after t = 1.6. 

Amplitudes of such impulses are four times greater 

than initial sine wave amplitude and often twice 

more than Hs. 

 

 
Fig. 10. Exceedance probability distribution of 

ordinates for A = 1.5 and positive cubic nonlinearity 

at various moments in time. Black line – significant 

wave height. 

 

 
Fig. 11 Snapshots of wave dynamics with A = 3 and 

positive cubic nonlinear term for the Gardner 

equation 

 

Graphs of kurtosis and skewness (Fig. 13) are 

also characterized by presence of peaks at times of 

higher probability of large-amplitude waves. 
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Fig. 12. Exceedance probability distribution of 

ordinates for A = 3 and positive cubic nonlinearity at 

various moments in time. Black line – significant 

height. 

 

 
Fig. 13. Skewness (green line) and kurtosis (blue 

line) of  for different points in time for A = 3 and 

positive cubic nonlinearity 

 

4 Conclusion 
The present paper studied the process of long sine 

wave disintegration in weakly nonlinear and weakly 

dispersive media within the Gardner equation with 

positive and negative cubic nonlinearity. We made a 

series of numerical computations to demonstrate the 

features of undular bores development for different 

signs of the cubic nonlinear term. If the cubic 

nonlinear term is positive and the wave amplitude is 

large, the solitons of both polarities appear. These 

waves interact and extreme amplitude waves can 

generate as a result of such collisions. This process 

is demonstrated well in exceedance probability 

distribution graphs for wave height as ordinates 

substantially exceeding significant amplitude Hs. 

Nonlinear interactions lead to the generation of 

higher harmonics forming the breaking asymptotic 

j
4/3

 for small times (as it was predicted within the 

dispersionless Gardner equation). For larger times 

the spectral peaks appear, they downshift with time. 
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