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Abstract: This work focuses on the derivation of a solution methodology to exponential anharmonic oscillator sys-
tem based on the expectation values. A differential-difference equation is constructed from the second derivative
of expectation value of the exponential analytic function. Rearranging the equation gives us an eigenvalue prob-
lem. But the derived operator is not self-adjoint. This makes it impossible to use classical definition of Rayleigh
Quotient for expectation value of the operator. Two-sided Rayleigh (or Ostrowski) Quotient considers both left and
right eigenfunction of the non-selfadjoint operator and this definition of expectation value gives the energy value
of the corresponding system. For the approximate eigenfunctions, the energy value is approximate. We construct
the final expectation value equation for the operator. But the optimization process for finding the minimum app-
roximate energy value isn’t analytically solvable. To validate the methodology, harmonic oscillator is studied at
the end and an acceptable result is found with elementary approximations of eigenfuctions. Improvement of the
approximations and solution to exponential anharmonic oscillator system are left as future work.

Key–Words: Anharmonic Exponential Oscillator, Differential-Difference Equation, Variational Approximation,
Two-sided Rayleigh (Ostrowski) Quotient.

1 Introduction
The motion of a quantum system is fully described by
the Schrödinger Equation [1] which is a parabolic par-
tial differential equations whose time variable is res-
ponsible for the system’s evolution while the position
variables describe the spatial behavior of the system.
The position variables are in fact the eigenvalues of
the position operators and they vary on the entire real
axis or an interval semi-infinite or finite depending on
how the system under consideration is modelled. The
number of the independent position variables is the
degree of the freedom for the system.

The solution of the Schrödinger equation gives
the wave function whose complex modulus square de-
fines the probability of the system under considera-
tion, that is, the probability of the system’s presence
at a specific position in the space and at a specified
time instance. Hence, the wave function should have
a unit norm over the domain of its position variables.
Of course, this brings the integrability condition on
the wave function. On the other hand, in many certain
cases the modelling does not permit the wave func-
tion to be normalized since the equal or almost equal

probability density everywhere may be countered. In
those cases not the unit norm condition but normali-
zability to Dirac delta function is considered.

The Schrödinger equation can be written in the
following form

ih̄
∂ψ (x, t)

∂t
= Ĥψ (x, t) , ψ (x, 0) = ψ0 (x) (1)

where x denotes the set of independent position va-
riables while ψ symbolizes the wave function of the
system under consideration. On the other hand, the
symbol Ĥ stands for the system’s Hamiltonian or Ha-
milton operator. It depends on the momentum and po-
sition operators and perhaps on time variable. Hence
we can write

Ĥ = H (p̂, q̂, t) (2)

where p and q stand for the momentum and position
operator vectors respectively. Beyond these, H stands
for the Hamilton function which defines the depen-
dence of the Hamiltonian on these operators and on
time. If we denote the degree of the system by ndf
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then we can write

p̂ ≡
[
p̂1 ... p̂ndf

]T (3)

q̂ ≡
[
p̂1 ... q̂ndf

]T
. (4)

Each element of these vectors corresponds to a dif-
ferent direction in the system’s phase space defined
by the expectation values of these elements. To be
more specific we need to give the explicit 5 definiti-
ons. They are as follows

q̂jf (xj) = xjf (xj) , xj ∈ [ aj , bj ] ,

j = 1, 2, ..., ndf (5)

p̂jf (xj) = −ih̄∂f (xj)

∂xj
, xj ∈ [ aj , bj ] ,

j = 1, 2, ..., ndf (6)

where f stands a continuous and differentiable at least
once univariate function. Until now we have used h̄
to denote the reduced Planck constant defined as the
ratio of the Planck’s universal constant h to 2π and we
are going to do so from now on.

In the study of the quantum motions, operators
stands as rather abstract entities and not themselves
but their expectation values give informations about
the system’s observable properties. The expectation
value of a given operator, say ô is defined as follows

〈ô〉 (t) ≡
∫
V
dV ψ (x, t)∗ ôψ (x, t) (7)

where V stands for the integration domain of the mo-
delled system while dV is the product of the position
variables (xjs).

Any operator defined to investigate a given quan-
tum system may depend on the fundamental operators
of the quantum mechanics. Even though the time and
energy pair can be related fundamental components,
the most basic motion related entities are momenta
and positions and therefore the related operators, na-
mely, momentum and position operators. Hence we
can assume the momentum and position dependences
of all operators, even though they exist or do not exist.
These dependences may or may not change in time.
If it does not change we can then mention autonomy
(time independence) or otherwise nonautonomy (time
dependence). Thus for the most general case we can
write.

ô = o (p̂, q̂, t) (8)

where o stands for the so-called operator function de-
fining the dependence of the operator ô on the mo-
mentum and position operators and on time. Thus, the

time dependence of the expectation value of the ope-
rator ô comes from two origins: (i) from the motion of
the system described by the wave function, (ii) from
the nonautonomy of the operator’s itself.

The autonomus operators have spectra remaining
unchanged during the motion because of their time
independences. Their eigenvalues and eigenfunctions
are all time independent. That is, their value are pre-
served during the motion. On the other hand, only
instantaneous spectral properties can be defined for
the nonautonomous operator. Their spectral entities,
eigenvalues and eigenfunctions must be time variant.

Since the observables of a quantum systems must
be measurable entities, the operators, whose expec-
tation values correspond to observables, must also
be self-adjoint or in other statement Hermitian. The
spectra of the Hermitian operators are located on the
real axis and the eigenfunctions corresponding to dif-
ferent eigenvalues must be orthogonal. If the operator
under consideration for measurable entity evaluation
is Hermitian and nonautonomous. Then its Hermiti-
city must be conserved during the system’s evolution.
However, the orthogonality amongst the eigenfuncti-
ons remains instantaneous.

As being an operator, the system’s Hamilton ope-
rator may be autonomous or nonautonomous. The
case of autonomy corresponds to the time indepen-
dent expectation value of the Hamilton operator. Since
its eigenvalues are known as the system’s energy, the
time-independent Hamilton operator having systems
have energies remaining constant during their evolu-
tion. However, this conservation is not automatic. The
constancy of the Hamilton operator expectation value
requres specifications on the initial form of the wave
function. This initial value function must be one of the
eigenfunctions of the Hamilton operator to get energy
conservation. Otherwise, some oscillations are obser-
ved amongst different energy states [2, 3].

1.1 Anharmonic Exponential Oscillator
A one-dimensional anharmonic exponential oscillator
system can be defined with the following Hamilton
operator

Ĥ ≡ 1

2µ
p̂ 2 + α

(
e
κ
2
q̂ 2 − Î

)
α, κ > 0 (9)

where µ,α,κ denotes the mass of particle, harmonicty
and anharmonicty constants respectively. An the ope-
rators are defined as

p̂g(x) ≡ −ih̄g′(x), q̂g(x) ≡ xg(x), Îg(x) ≡ g(x)

x ∈ (−∞,∞) (10)

S. B. Ozdemir, M. Demiralp
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 171 Volume 1, 2016



Various studies were performed about this equation
(9) in our previous works [4–7]. But the developed
methodologies were inadequate to give an acceptable
result.

For convenience when dealing with that Hamilto-
nian we can convert it to a dimensionless equation. To
do this we have to define dimensionless time (t̄) and
position (x̄) variable as

t ≡ t

tdv
, x ≡ x

xdv
(11)

and put them into the Schrödinger equation.

i
∂ψ
(
x, t
)

∂t
=− 1

2

(
h̄tdv
µx2dv

)
∂2ψ

(
x, t
)

∂x2

+

(
αtdv
h̄

)(
eκx

2
dvx

2 − 1
)
ψ
(
x, t
)
(12)

Without loss of generality, we can choose the values
in the brackets as
h̄tdv
µx2dv

= 1, ε = κ2x2dv,
αtdv
h̄

=
1

2ε
(13)

and write all other variables without bar(¯) throughout
the paper. After all, we obtained the potential energy
for that system as

V (x) =
eεx

2 − 1

2ε
(14)

Here, ε is an exponential variable which defines the
harmonic oscillator potential energy when ε→ 0.

2 Differential-Difference Equation
To obtain an ordinary differential equation by using
the definition of expectation values we take an analy-
tic function that depends on the position operator
f (q̂). For any f (q̂)

d2

dt2
〈f(q̂)〉 = 0 (15)

is correct at stationary state. For the E energy state,
the explict form of (15) can be written as below.

−
〈
V ′ (q̂) f ′ (q̂)

〉
− 2

〈
V (q̂) f ′′ (q̂)

〉
+

1

4

〈
f (4) (q̂)

〉
+ 2E

〈
f ′′ (q̂)

〉
= 0 (16)

An analytic function for the system defined at (9) can
be chosen as in exponential form and its expectation
value labeled with σ(ν, ε) is given below.

f (q̂) ≡ e−νq̂

σ(ν, ε) ≡ 〈f (q̂)〉 (17)

By replacing the given V (q̂) (14) and chosen f (q̂),
the equation (16) can be rewriten. The obtained equ-
ation is called difference-differential equation in the
literature [8–13].

4ν4σ′′ (ν, ε) + 12ν3σ′ (ν, ε) + 3ν2σ(ν, ε)

− 4ν2
σ′ (ν, ε)− σ′ (ν − ε, ε)

ε
− 2νσ′ (ν − ε, ε)

− 2ν
σ (ν, ε)− σ (ν − ε, ε)

ε
= E(ε)

[
8ν2σ′(ν, ε) + 4νσ(ν, ε)

]
(18)

To cope with such a complex equation we need to
rearrange it and write in an eigenvalue problem form.

L̂σ(ν, ε) = E(ε)σ(ν, ε) (19)

L̂ is an operator where its expectaion value gives the
energy of the system. Without giving the intermedi-
ate steps, basically the above form of the equation can
be written by first obtaining differential identicals of
appropriate group of terms in (18), then multiplying
both sides with suitable terms to do simplification and
finally by taking the integral of both sides from 0 to ν.
We ended up with the following eigen-equation of L̂.

ν
3
2

2

d

dν

(
ν

1
2σ(ν, ε)

)
− 1

2

σ(ν, ε)− σ(ν − ε, ε)
ε

− ν−
1
2

4

∫ ν

0
dηη−

1
2
dσ

dη
(η − ε, ε)

≡ L̂σ(ν, ε) = E(ε)σ(ν, ε) (20)

3 Variational Computational Appro-
ximation

The equation (20) is ensured if both σ(ν, ε) and E(ε)
is a solution pair. But if we choose an approxima-
tion to σ(ν, ε), we get an approximate E(ε) value. We
can call them “Variational Computational Approxima-
tion” [3, 14].

For self-adjoint L̂, the expectation value of the
operator can be described with a ratio called “Ray-
leigh Quotient” [15, 16] as given below.

E(ε) =

∫∞
0 dνσ(ν, ε)L̂σ(ν, ε)∫∞

0 dνσ(ν, ε)2
≡
〈
L̂
〉

(σ) (21)

But for the case defined in (20), the operator is not
self-adjoint. So the approach and the definition of ex-
pectation value of L̂ must be different [17–19]
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For any operator L̂, both right and left eigen-
equations can be written as

L̂σ(ν, ε) = E(ε)σ(ν, ε)

L̂†ρ(ν, ε) = E(ε)ρ(ν, ε) (22)

respectively. σ(ν, ε) is the right eigenfunction and
ρ(ν, ε) is the left eigenfunction and they are different
for non-selfadjoint operator L̂. The expectation value
of L̂ can be defined by “Two-Sided Rayleigh (Ost-
rowski) Quotient” [20–22] as given in the following
equation.

E(ε) =

∫∞
0 dνρ(ν, ε)L̂σ(ν, ε)∫∞
0 dνρ(ν, ε)σ(ν, ε)

≡
〈
L̂
〉

(ρ, σ) (23)

First of all, we can start the calculations by sugges-
ting very basic above approximations for right and left
eigenfunctions.

σapp(ν, ε) ≡ e−γ1ν , ρapp(ν, ε) ≡ e−γ2ν (24)

By using these approximations with (20) in Ost-
rowski quotient (23), the following expectaion value
is derived.〈
L̂
〉

(σ, ρ) =
1

4 (γ1 + γ2)

+
γ1 (γ1 + γ2)

4
√
γ1γ2

arctan

(√
γ1
γ2

)
− γ2

(γ1 + γ2)
2

+

(
1 +

γ1 (γ1 + γ2)

2
√
γ1γ2

ε arctan

(√
γ1
γ2

))
eγ1ε − 1

2ε

(25)

When γ1 > 3γ2, the energy value stays always posi-
tive. With proper choices of γ1 and γ2 this is always
true.

To facilitate the analysis, polar coordinates can be
used with the following definitions.

γ1 ≡ r sin (ϕ)2, γ2 ≡ r cos (ϕ)2, (26)

Here ϕ varies from 0 to π/2 and r must be nonnega-
tive to guarantee nonnegative γ values. Replacing γ’s
with their transformations in (25) gives us the follo-
wing equation.〈
L̂
〉

(σ, ρ)

=

(
1

4
− cos (ϕ)2

)
1

r
+

er cos (ϕ)
2ε − 1

ε

+
ϕ

2
tan (ϕ)

(
er cos (ϕ)

2ε − 1

2

)
r (27)

Another condition is revealed from the above equation
that for all nonnegative r values, ϕ > π/3 must be
provided to verify the positivity of right-hand side and
there must be a minimum value for it. To find the mi-
nimum, we have to take the derivative with respect to
r and solve as it equals to zero. But unless ε is not
equal to 0, analytical solution is not available.

For ε = 0, the equation becomes the governing
equation for energy value of harmonic oscillator.

Eho =
〈
L̂
〉

(σ, ρ)
∣∣∣
ε=0

=

(
1

4
− cos (ϕ)2

)
1

r
+
(ϕ

4
tan (ϕ) + cos (ϕ)2

)
r

(28)

We take the derivative wrt r and equate it to zero.
Then the optimal ropt is found after solving the equ-
ation.

ropt =

√
1− 4 cos (ϕ)2

ϕ tan (ϕ) + 4 cos (ϕ)2
(29)

The optimized energy value Eopt is found by repla-
cing r with ropt in (28) as

Eopt =
1

2

√
1− 4 cos (ϕ)2

√
ϕ tan (ϕ) + 4 cos (ϕ)2

(30)

Eopt has a minimum in the range of π/3 < ϕ < π/2.
This can be determined by focusing on the behaviour
of ropt in that range. ropt = 0 where ϕ = π/3 and
ϕ = π/2 and ropt has a local maximum between these
values since it is continuous. This value can be used
to determine the optimal ϕ.

3.1 Flatness - Robustness Principle
The value of Eopt is monotonically increasing when
ϕ varies from π/3 to π/2. This doesn’t give informa-
tion for determining ϕ. But as mentioned before, the
behaviour of ropt in that range gives a clue for the cal-
culation.

ropt is a minimum value and it is desirable that
any small change in that value leads small changes
in the Eho value. This property defines the possible
flatness (or robustness) of Eho.

The less change in the second derivative of Eho
wrt r at ropt gives the more flattened Eho according to
r. So taking the second derivative and then optimizing
that equation wrt ϕ gives the sought values.
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∂2Eho
∂r2

(ropt, ϕ)

=
1

2

(
1− 4 cos (ϕ)2

)− 1
2
(
ϕ tan (ϕ) + 4 cos (ϕ)2

) 3
2

(31)

The ϕ value that cause the smallest change while var-
ying through π/3 to π/2, gives the flatness of robust-
ness status of Eho

0 =
∂

∂ϕ

(
∂2Eho

∂r2
(ropt, ϕ)

)
=
(

1− 4 cos (ϕ)
2
)− 3

2
(
ϕ tan (ϕ) + 4 cos (ϕ)

2
) 1

2

Φ(ϕ)

(32)

where

Φ(ϕ) =− sin (2ϕ)
(
ϕ tan (ϕ) + 4 cos (ϕ)2

)
+

3

4

(
1− 4 cos (ϕ)2

)
×
(

tan (ϕ) + ϕ+ ϕ tan (ϕ)2 − 4 sin (2ϕ)
)

(33)

It is expected that the right-hand side (32) is 0 in a
value between ϕ = π/3 and ϕ = π/2. It is just provi-
ded if and only if Φ(ϕ) = 0. Although Φ(ϕ) = 0
has a real solution, it is hard to determine analyti-
cally. So we can write basic scripts/codes in a symbo-
lic or numerical computation programs to calculate it.
We prefer to use MuPAD with 20 decimal sensitivity
and get ϕ = 1.179713302. At same level, correspon-
ding energy value for harmonic oscillator is found as
Eho = 0.600330425. That values is not a bad appro-
ximation to the the exact value Eho = 1/2.

4 Concluding Remarks
This work is the early step of variational approxima-
tion to the anharmonic exponential oscillator system
energy. The second derivative of expectation value
of analytic function (f(q̂)) wrt t is our primary equ-
ation. Its explicit form is differential-difference equ-
ation which is very complex to handle with common
solution methods. So we need to rearrage it to de-
fine as an eigenvalue problem. The defined operator
L̂ in this step is non-selfadjoint. So basic Rayleigh
Quotient gives false expectation value. An improved
version for non-selfadjoint operators is defined Two-
sided Rayleigh (Ostrowski) Quotient in the literature
and we performed it for our case.

The validation is one of the important stage, so
we choose very known harmonic oscillator system.
The equations of desired system approximate harmo-
nic oscillator when ε → 0. With very basic sugges-
tions to the approximation of eigenfunctions, we get
promising result in energy value. The approximations
can be enhanced by adding enough parameters to the
eigenfunctions. It is expected that with this enhance-
ment, the E values can approximate the exact value
more.

The second and more important step will be appl-
ying this methodology to the case where ε 6= 0. Thus,
the energy values of the desired system ( anharmonic
exponential oscillator ) will be calculated. All these
are left as future work for this study.
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