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Abstract: - Based on the mathematical model developed and analyzed in the Part 1, further analysis and 

computer simulation is performed as concern to peculiarities of the stability and possible stabilization of the 

unstable modes for interfacial boundary in the cylindrical channel, where melt is moving with solidification on 

the walls. Thin solid film on the walls is called garnissage, which is useful for the walls’ protection against 

destroying from high-temperature and chemically aggressive melts and for the keeping the transported melt in a 

pure state, without pollution from the particles of the walls. The results may be of interest both theoretically (in 

stabilization of the processes in continua), as well as practically (in metallurgical aggregate machines).  
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1 Introduction 
More complex physical situations comparing to the 

ones considered in the Part 1, in which suppression 

of the parametric oscillations of the system by 

considered simple approaches is impossible, is 

analyzed in this paper. As an example the results of 

calculations by the model obtained for the following 

values of parameters:  

1 4,33 cal / ( )m s К    , 3

2 7,8 10   kg/m
3
, 0R =0,1m, 

21 65  kcal/kg are presented in the Table 1: 

Table 1 Dependence of exponential ( e


) by 

different crystallization temperatures:  
values decrease exponentially e

  times 

k  
 , Hz    by   T , К 

293                333                    373 

10 0,17                    0,51                         0,85 

10
2 

1,70                    5,10                         8,50 

10
3 

17,0                    51,0                       85,0 

 

From the table it is visible, which is the 

influence of physical statements of the problem on 

the fading rate of parameters’ perturbations of the 

studied system. So, at 3
10k   in time, equal to one 

second, the perturbation amplitude of parameters 

decreases in e
85

 time if temperature of crystallization 

makes 373K. With increase of T
  (decrease of 

entropy of system), stability of system increases.  

According to the Table 1 it is possible to 

estimate characteristic fading time of fluctuations of 

the parameters of physical system (technological 

process) in each case. Even when  the system is 

steady, at slow fading of casual (or regular) 

perturbations of its parameters it is expedient to use 

the automatic heat flux control systems for 

acceleration of the process of parametric 

fluctuations’ suppression. Because the technological 

mode in some cases demands maintenance of 

characteristics of process in strictly set limits 

(special metallurgy, protection of lining of 

metallurgical units against thermal and chemical 

destruction, etc.).  

As shown in the Part 1, general information 

about the nature of spreading of parametric 

oscillations on the boundaries of melt crystallization 

and stability of system can be received from the 

analysis of the differential equations making 

mathematical model of the physical phenomenon. In 

more complex systems considered below such 

analysis isn't always possible, but application of 

asymptotic decompositions of the functions sought 

in a series by the small parameter   (Eigen values 

of a task) is effective. 

In a lack of experimental data about physical 

process it is difficult to estimate an adequacy to the 

constructed mathematical model and solutions of a 

task received on its basis to the real physical object. 

Therefore especially important is the question of 

reliability of the applied technique of researches, 

which is closely connected with adequacy of 
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mathematical model. In the case considered the 

reliability of the applied technique can be estimated 

as follows. The studied problem of stability of the 

front of crystallization in the cylindrical channel 

allows analyzing the properties of system on the 

basis of the differential equations describing it by 

means of the stated artificial approach, without 

solution of the equations. The same problem can be 

solved using the asymptotic decompositions of the 

functions sought by small parameter. Comparison of 

the two approaches allows estimating efficiency and 

reliability of the applied research technique for 

stability of fronts of crystallization. 

 

 

2 The results obtained and the 

problem statement 
Though the harmonic perturbations of parameters 

were considered, the conclusions made are fair for 

any small perturbations as far as owing to the 

principle of superposition similarly it is possible to 

carry out the analysis of system stability for a case 

of non-harmonic perturbations decomposing them in 

Fourier series by harmonic components.  

 

 

2.1 Solutions with application of the 

asymptotic decompositions 
Consider the asymptotic decompositions of the type  

         0 1 2 2 3 3 ...j j j j j            ,             (1) 

where j=1,2. Solving the equation array  

       1
1

1

,
1 dp

u
dr 




 1
1

1

,
mp

v
r


 1

1

1

,
kp

w



          (2) 

1 1 1
1 ,0

du v u
i m kw

dr r r

 
   

 
  

2 2
2

2 2

1n n
n n

d d m

dr r dr r

 
 
 

   
 

                

1 1 1 1 1

2 2
.

2 1

n

T p p T Tn m
k

a r r r x  

  
    

  

   

   
 

 With the boundary conditions:  

0 ,r s  0,v   1,r    1
21 11 ,

dp

dr
     

where  1 1 1 1, , , ,u v w p  - amplitudes of 

perturbations of velocity, pressure and temperature, 

correspondingly, and 2 2 2/n nk a   , the Eigen 

values   were computed based on the fact that 

value R
 for crystalloid matters is usually rather big 

[1] and therefore   can be calculated already in a 

zero approach. The Eigen values of the perturbed 

system obtained in the previous subchapter for the 

case of immovable melt are the following: 

    1 , 2 5

0 3 , 4 6

.
ln

k m

k m

ABi A k Ak

R s A Bi A k A


 

   


           (3) 

After computing   by the method above, from 

solution (3) of the problem in a zero approach the 

condition of oscillations’ grow at the boundary of 

phase transition in time is written as follows 

(instability condition):  

             1 , 2 5

3 , 4 6

,0k m

k m

ABi A k A

A Bi A k A


 


                 (4) 

where are:  

       1 0,m m m mA K ks I k K k I ks     

       2 0,m m m mA K ks I k K k I ks     
 

       3 0,m m m mA K k I ks K ks I k  
  

       4 0,m m m mA K k I ks K ks I k                    
 

       5 0 0 0,m m m mA K k I ks K ks I k   
   

       6 0 0 0,m m m mA K k I ks K ks I k  
 

where dash means derivative by argument kr . The 

inequalities are satisfied due to the known properties 

of the Bessel and Hankel functions. Using the last 

equations, one can show that condition (4) is not 

satisfied by any values of the parameters, so that the 

Eigen oscillations of the system are absent in this 

model statement. An analysis shows that oscillations 

of the front crystallization of constant amplitude are 

impossible too. 

Thus, in this model statement there can be only 

fading oscillations in a system, decrease’s rate with 

time of which depends on the value  . If 

characteristic time of course of technological 

process considerably exceeds time of fading of 

casual parameters’ perturbations, the control system 

isn't necessary. Otherwise it is necessary in order 

that corresponding change of parameter 
,k mBi  to 

achieve the maximum value   for the purpose of 

increase of fading intensity for system’s 

perturbations. 

Further, in view of complexity of tasks about 

stability of fronts of crystallization in systems with 

existence not only the perturbed but also the melt’s 

average flow, we will apply generally the technique 

described here, which efficiency is confirmed on a 

concrete example.  

 

 

2.2 Mutual influence of the system’s 

parameters and basic features of its behavior  
The influence of physical properties of the melt and 

channel wall, thickness of the layer of a solid phase 

formed of melt on a wall of the channel, type of a 

wall and other factors on stability of the system and, 
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in particular, on stability of the front of 

crystallization was shown above. Because in 

engineering applications such tasks are interesting in 

connection with protection of walls of channels and 

linings of metallurgical units against thermal and 

chemical destruction, and melt - against pollution by 

outsider admixture, the absolute importance has also 

a question of a choice of optimum ratios between 

parameters of system. 

For example, for protection of the channels with 

garnissage [1-3]  the automatic control of a form 

and position of the boundary of garnissage phase 

transition (thin layer of solid phase solidified on the 

wall from melt) must be done the thickness of solid 

film must be kept in the range stated. The question 

about an optimal garnissage thickness was discussed 

in [3,4]. As far as unperturbed state of the system 

has substantial influence on the system’s behaviors, 

it is necessary to consider concrete features of the 

available unperturbed states. The considered 

solution belongs to a case when the equations of 

thermal balance are written for 
n const   and the 

thermal resistance of the channel wall can be 

neglected, owing to what boundary conditions also 

become significantly simpler and the solution of the 

corresponding boundary task has the form:  

      
1

0

,
ln

1
ln

r
T

s
       

2

2 0

.
ln

1
ln

r
T

s
                  (5) 

If the requested thickness of solid layer on the 

channel wall is stated, from (5) the temperature of 

channel wall is:  

                        

2 0

.
ln

1
lnw

s
T

s
                         (6) 

If the temperature of channel wall is given, the 

thickness of the garnissage layer with account of (6) 

is computed as 

                             2 1

0 .wT
s s

 
                          (7) 

The analysis of (7) shows that it is possible to 

receive thin garnissage in case when temperature of 

a wall is close to a melting temperature (at any 0s ) 

and in case of wide axial area of constant 

temperature (
0 1s ) with a sharp gradient on a 

channel wall. Thus, in the second case irrespective 

of other conditions any perturbations of system fade 

almost instantly ( 1 ), whereas in the first case the 

rate of fading perturbations of system significantly 

depends on width of axial area with a constant 

temperature (parameter’s 0s  value). It is also 

necessary to notice that as 0jA   ( 1,4j  ), the 

modified Biot number 
,k mBi  has limited influence 

on the rate of development of the system’s 

perturbations at 
, 0k mBi  , only at 

, 4 3/k mBi A A  this 

influence can be any big. The last is possible only in 

case of application of special control systems of heat 

fluxes, however then there can be incorrect a zero 

approach based on the assumption of a small   (a 

consequence of small gradients of temperature on 

the boundary of phase transition). 

At 
0 0s   (the axial area of constant temperature 

transforms in a cord) we receive 0 , therefore 

without the operating system any perturbations 

spread without fading and increase. Only 

application of the special control systems of heat 

fluxes on the channel wall can achieve increase or 

fading in time for the corresponding perturbations 

(for achievement of spatial recognition to each 

harmonic with wave numbers ,k m  there has to be 

the regulation channel for value 
,k mBi ).  

For a choice of optimum thickness of a 

garnissage layer in each case it is necessary to 

proceed from the analysis of extreme values of 

expressions of type (5)-(7). For example, research of 

expression (7) shows that function 
0 )(s s , generally 

speaking, has no extreme because in general case 

0/ 0ds ds  . Therefore it is necessary to define

)(extr s , )(1, ms s , where 
ms - physically maximal 

attainable value s . Generally for determination of 

extreme Eigen values of a task taking into account 

(3) requires solving the transcendental equation. For 

analysis we consider later on two limit cases.  

 

2.2.1 The short-wave perturbations 

By 1k  functions    ,m mI z K z
 

and derivatives 

   ,m mI z K z 
 
have the characteristic orders of value: 

  ,
2

z

m

e
I z

z    
 

2
,

m

m z

I z
K z

e


   

  ,
2

z

mK z e
z

      ,m mI z I z  

therefore: 
3 2 ,A A

 4 1,A A
 

2 2

2

2 2

1

,
k ks

k ks

A e e

A e e

 

 




  

 

 
1

2 2

1 ,
2

k s

k kse
A e e

k s



   01

5 6

0

,
1

2

k sA A e
k s


 

where from with account (3) follows:  

 
 

,

0 ,

.
ln

1
1

1
k m

k m

Bi k thk sk

R s Bi thk s k


 
 

  

 
 


        (8) 

By  1 1k s  from (8), accounting  1 1thk s  :  
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0

,
ln

2k

R s




  

where from follows that short-wave perturbations of 

the boundary of melting thick garnissage layer are 

not controllable with the method described above, 

they are decreasing with time by a rate proportional 

to the wave number k . By  1 1k s   1 1/s k  

an approximate correlation    1 1thk s k s   can be 

considered, which yields:  

 
 

2

,

0 ,

.
ln

11

1 1
k m

k m

Bi k s
k

R s Bi s


 
 

  


 


 

Analysis of the expression obtained shows that a 

thin garnissage allows controlling the stability of 

front crystallization. With account of the 

assumptions made the following approximate 

estimations of the parameters follow:  

       

1 1/ ,s k 

   

, , ,k m k mBi Bi

  

0; 

            

(9)

 
1 1/ ,s k 

   

, , ,k m k mBi Bi

   

0; 

 
where 

,k mBi k  

 

is the critical modified Biot 

number corresponding to a loss of stability. As seen 

from (8), the short-wave perturbations of the 

boundary of crystallization of thin garnissage layer 

can grow in time by big negative 
,k mBi , so that in 

absence of the heat flux control system it is 

impossible. 

In other cases, investigating function (8) on an 

extreme, we receive that /d ds  has the sign 

determined by value 
,k mBi : at 

,k mBi k  the Eigen 

numbers  s  increase and, therefore, owing to the 

carried-out estimates, the garnissage is stable, and at 

,k mBi k  the function  s  decreases, but /d ds  

doesn't change a sign anywhere and as 

   0lim 2 / ln 0
s

s k R s


   , it also corresponds to 

stability. Thus, short-wave perturbations of 

garnissage in a linear statement don't lead to 

violation of its stability.  

 

2.2.2 The long-wave axisymmetric perturbations 

More dangerous as concern to breaking the 

garnissage instability is another limit case – long-

wave perturbations of the parameters of physical 

system. By 1, 0k m  approximations of the 

functions    0 0,I z K z
 

and their derivatives are 

applied, which are correct for 1z :  0 ,1I z
 

 0 ,0I z
    0 ln 2 / ( ) ,K z z 

 
 0 1/ ,K z z

 

where   - the Euler constant. This gives: 
1 ,1/A k

 

2 ,0A
 3 ,lnA s

  4 ,1/A ks
 5 1,A A

 6 0 ,lnA s
 

afterwards from (8) follows 

      ,

0 0 ,

.
ln ln ln

1 1

1
k m

k m

Bi s

R s s sBi s


 

  
 




       (10) 

In contrast to the short-wave perturbations, as 

seen from (10), the long-wave perturbations have 

the Eigen values independent of the wave number. 

Therefore for 1k  garnissage is stable. 

Instability may be provoked by the system of 

automatic heat flux control if 
,k mBi satisfies  

 
 

,

0

.
ln ln ln

1 1
k mBi

s s s s s

 
 


 

Investigation of the function (10) shows that by 

, 0,k mBi 

 

,1/ k ms Bi

 

with increase of garnissage 

thickness the fading rate of perturbations is growing, 

and by 
,1/ k ms Bi - the fading rate of perturbations 

is falling down. This means that 
,1/ k ms Bi

 

is the 

maximum point of function  s . 

Also the question of a ratio of fading rates for 

short-wave and long-wave perturbations of a 

garnissage is of interest. We consider it based on 

formulas (8), (10), assuming  1 1k s  in the first 

case and 1k - in the second, 
0 1s . Then we get 

for the ratio of values  s  in specified cases  

            ,

,

ln
.

1
2 k m

k m

Bi s s
k

sBi


                     (11) 

The obtained formula (11) is analyzed by 
, 1,k mBi

 1s , where

 

2k , e.g. 1,

 

and condition 

1  requires by 1s

 

the following value of the 

parameter

 

, 2k mBi k . From here it is possible to 

draw a conclusion that in absence of a control 

system for heat fluxes on an external surface of the 

channel the short-wave perturbations fade much 

faster than the long-wave perturbations. And 

commensurable fading rates of these perturbations 

can be only in the presence of the powerful operated 

heat fluxes from the channel into surroundings 

(almost instant freezing of a melting wave for a 

solid layer on a channel surface that is practically 

very problematic to provide).  

The revealed features of behavior of the 

boundaries of phase transition in cylindrical 

channels and interference of various parameters of 

physical system allow organizing optimum 

technological process in each case. Further the 

considered questions will be investigated for 

channels, in which melt is flowing in the channel 
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along its axis in unperturbed state (transportation of 

melt in channel with garnissage protection of a 

wall).  

 

  

3 Effect of liquid phase flow on the 

instability of front crystallization 
The main regularities of oscillations of the 

boundaries of phase transition in systems with the 

cylindrical channels containing the motionless melt 

solidifying (crystallizing) near the walls having 

temperature below solidification temperature of 

melt were considered above. Thus, we investigated 

mutual influence of various parameters of physical 

system, including influence of a wall of the channel 

which, generally speaking, can be multilayered. By 

comprehensive consideration of a task on a number 

of the simplified physical and mathematical models 

application of a highly effective technique of 

approximate solution of this sort of tasks by means 

of asymptotic decomposition of the functions sought 

in a series by small parameter   was shown. 

 

 

3.1 Channel with multilayered wall 
Now the described technique is applied for the 

systems, which structural scheme is shown in Fig.1:  

 
Fig.1 Structural scheme of the cylindrical 

front crystallization of melt flowing in a channel 

 

 The channel generally may contain a multilayered 

wall from N various layers. On an external surface 

the system of automatic control of heat fluxes for 

excitation or suppression of oscillations in system 

can be installed. Physical properties of a 

multilayered wall of the channel have impact on 

thermal-hydraulic stability of system at any mode of 

a melt flow in the channel. However the considered 

rather simple model task can seem too rough 

approach of complex real physical system and 

besides perhaps essential influence of hydrodynamic 

instability on the general course of technological 

process may happen.  

Parameters of unperturbed system can play a 

significant role in the course of appearance and 

distribution of oscillations on the boundary of phase 

transition and oscillations of all characteristics of 

system. Taking into account the above it is 

necessary to pay attention to adequacy of the 

mathematical description of unperturbed system and 

to reveal features of influence of its characteristics 

on the perturbed state. We consider melt as 

incompressible liquid and viscosity in the majority 

of the considered cases is neglected due to its 

negligible value for many metal melts. We assume 

that in a state of dynamic balance of system a melt 

moves with a speed, almost constant on all cross 

section of the channel (viscous friction of melt with 

a wall is neglected). Then the equations of thermal 

balance of the described system possessing axial 

symmetry are written in the form:  

 
2 2

1 1 1 1
1 1 0 1 2 2

1
,

T T T T
cu

x x r r r
 

 
 
 

   
  

   
    

                  
2 2

2 2 2

2 2

1
0

T T T

x r r r


  
 

  
.              (12) 

Here 
1 1 0, ,c u  are, respectively, density, heat 

capacity coefficient and melt flow velocity along the 

channel axis, Т- temperature of unperturbed system. 

Similarly – the second equation of the system (12) is 

the heat conductivity equation for solid phase. If the 

channel’s wall is under consideration as well, then 

corresponding equation is also added for it. 

The boundary conditions are similar to the above 

considered, only the difference is that temperature 

of the wall wT  is in general function of x, and, 

besides, two boundary conditions must be stated by 

х, for example, temperature profile  0T r  and heat 

flux  0

1xT r  of a melt in cross-section х=0 may be 

stated. Here  0

1 1 /xT r T x    by х =0. 

 

3.1.1 Dimensionless mathematical model 

In dimensionless form with account of the above the 

following boundary-value problem is got:  

2 2

1 1 1 1

2 2

1
,

T T T T
Pe

x x r r r

   
  

   
 

2 2

2 2 2

2 2

1
0;

T T T

x r r r


  
 

  
(13) 

 1,r     1jT    1,2 ,j      1 2
2 ;

T T

r r


 


 
         (14) 

,r s  2 ;w xT T  0,x     0

1 1 ,T T r  01
1 ,x

x

T
T r




  (15)                      

where 2

0 0 1Pe w R a - Peclet number,   ,w xT  0

1 ,T r

 0

1xT r - given functions. The criterion Re PrPe   

characterizes heat similarity in a moving medium 

and reflects the ration of convective and conductive 

(molecular) heat transfer in the channel. 
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3.1.2 Solution of the dimensionless boundary task 

The boundary task (13)-(15) may be solved by 

Fourier method introducing instead of  jT r  

function  jT r -1, for which system (13) preserves 

its view but the first boundary condition (14) 

becomes uniform. Let 1j jT T  ,     ,j j jT X x R r  

the with account of the above yields  
2

2

2

1
0,j j

j j

d R dR
R

dr r dr
     

2

2

2
2 0,j j

j j

d X dX
j Pe X

dx dx
    

where j  are Eigen values. The solution of the 

equation array thus obtained is written as follows  

   2 2 2 2

1 1 1 2 1exp 4 exp 4 ,
2 2

x x
X d Pe Pe d Pe Pe    

     
   

  

2 2

2 1 2 ,x xX be b e 
     1 0 2 0 ,j j j j jR c J r c Y r    (16) 

where 
0 0,J Y - Bessel functions of the first and second 

type of zero order, , ,j j jnb d c  ( 1,2,j  1,2n  ) are 

constants computed from conditions (14)-(15). 

Because value 
1R  must be limited, 

12 0c   must 

be due to  0 0Y  . Without restriction on 

generality 
11 1c   can be put, then from condition 

 0 1 0J    follows numbered set of positive values 

of parameters 
1k . Constants 

2 jc  have the form 

 

       
0 2

21

0 2 0 2 0 2 0 2

,
Y

c
J s Y J Y s



   




   

              

       
0 2

22

0 2 0 2 0 2 0 2

J
c

J Y s J s Y



   




.         (17) 

For calculation of jb  the following equation is used:  

 2 2 2 2 2 1

1 2 1 2

x x q x q xbe b e A d e d e   
   , 

which must be satisfied identically, therefore 

expanding the functions in a Taylor series and 

comparing the equal coefficients by similar terms in 

the equation yields  

 1 2 1 2 ,b b A d d        1 2 1 1 2 2 ,b b A q d q d     (18)             

   2 2

1 1 2 2 ,1 1 0q d q d       2 2

1 1 1 2 2 2 ,1 1 0q q d q q d    

where are   2 2

1,2 2 11/ 2 4q Pe Pe   , 1,s s  

 12 12 1 1 2sinA J s    . The non-trivial solution of 

this uniform system of algebraic equations (SAE) 

exists only by 
1,2 1q     1 2q q , therefore:  

      1 2,1 2,1 1,20,5 1 ,nb A q d d    
 ,1,4n            (19) 

 21 22 2 20,5 1 ,b b Ad q       23 24 1 10,5 1 .b b Ad q    

where 4 pairs of values 
jnb  were got. In the first 

equation together with ,1,4n   all first indexes with 

signs «+» and «-»consecutively are taken one-by-

one, then – similar the second indexes. Finally, 

accounting the laid out and expressions (16)-(19), 

solution of the boundary task (13)-(15) is written as:  

         
4 2

1 0 1 3 2

1 1 1

,1 expk jk j n

n k j

T J r d q x 




  

        

            
4 2

1

2

1 1 1

exp 1
j

jnk jnk

n k j

T b x




  

   
         (20) 

       

       
0 2 0 2 0 2 0 2

0 2 0 2 0 2 0 2

nk nk nk nk

nk nk nk nk

J Y r J r Y

J Y s J s Y

   

   





, 

where  

   2 2

2 11,2
,1/ 2 4Pe Pe   
  

   2 2

2 13,4
1/ 2 4Pe Pe    . 

Constants jnkb
 

computed by (19) through jkd , 

which are obtained from boundary condition (15):  

   
2

0

0 1 1

1 1

,jk k

j k

d J r T r


 


 

      
2

2 2 0

1 0 1 1

1 1

.1 4 2
j

jk k k x

j k

d Pe Pe J r T r 


 

  
    

 

Accounting these series  0

1T r ,  0

1xT r  by Bessel 

functions, expression for the coefficients yields 

 
   0 0

1 1 1 0 122 2
1 1 01

1
1 ,

4
k x k

kk

Pe
d T T J r rdr

JPe




 
  
  

 
  (21)

           

 

 
 0 0

2 1 1 0 12 2 2 2 2
1 1 0 1 1

1
1 1

4 4
k x k

k k k

Pe Pe
d T T J r rdr

J Pe Pe


  

    
     
         

 

 

Mathematical model (17), (19)-(21) for heat 

equilibrium of the system despite the simplifications 

made for real physical situation is still substantially 

complex. It needs numerical solution on computer. 

 

3.1.3 The case of linear dependence
 

 1 xT  

One of the most simple is a case of a linear function  

 1 xT
 
or 

1 1/T x const    (temperature gradient 

of melt along the axis of channel is constant). Then 

accounting the type of boundary task (13)-(16), one 

can assume that  2 xT  is linear function too, and 

solution of the task is written as follows:  

   2

1 1 1 2 ,0,25 lnT Pe r c x r c x   
     2 3 4 ,lnT c x r c x   

where from the extremity condition of  1 xT
 

by 

0r 
 
results 

1 0c  , and from the assumptions made 

yields:  2 1 2 ,c x x c 
 2 3,c c const , 

2

1 1 1 2 ,0,25T Pe r x c    
    2 3 4 5,lnT c x r c x c    
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where 
4 5,c c const . From here follows that in this 

model the boundary of phase transition r r
 

changes by х from 1r 
 
by х=0, thus:  

 2

1 1 1 ,1 0,25 1T Pe r x           

               
2 1 12 1 12 ,1 0,5 lnT Pe r x    

            
(22) 

with accuracy to linear terms by х. The approximate 

solution thus obtained (22) is correct if on the wall 

of channel the temperature distribution is kept as  
2 2

1 12 1 121 ln .wT Pe s s s x      

The boundary of phase transition in this case is 

described by function 1 4 /r x Pe   . This expression 

is the more precise, the less is value /x Pe , where 

from follows that it is valid for high Peclet numbers 

(strong convective heat transfer). By 1Pe  the 

temperature profiles in liquid and solid phases are 

similar and in a first approach they can be 

considered independent of х for the short channel. 

 

 

3.2 Region of the phase transition 
By consideration of a problem of protection of the 

channels’ walls in the steel-smelting units of ejector 

type by means of a garnissage two-phase area takes 

place also for the following reasons (see Fig.2). 

Slag-metallic melt moves along a channel axis, the 

area  10,r R  is occupied by slag-metallic alloy, 

 1 2,r R R - by metal melt with solid slag inclusions 

(the case, when slag is more refractory than metal 

considered),  2 2 0,r R R r - a layer of a solid metal 

phase (garnissage).  

Thus, based on a hypothesis of existence of 

phase transition area with zero width, we have: a 

surface 
1r R - the boundary of slag phase transition 

having slag melting temperature 
шT T  , 

2r R - a 

surface of metal crystallization with a temperature 

мT T  ,  1 2,r R R - two-phase area. Even in the 

assumption Tliq=Tsol the described multiphase multi-

component medium is non-uniform and has the 

complex mathematical description.  

 
Fig.2 Structural scheme of the two-phase flow   

with crystallization of melt on the channel wall 

3.2.1 Flow of two-phase medium with 

crystallization on channel’s wall 

In a first region of the described system flow of 

slag-metallic alloy can be assumed in first approach 

inviscid. In a second region viscosity of melt is 

substantial due to abrupt it’s grow because of 

appearance of some solidified particles.  

For simplification of the model we assume that 

the flow velocity profile in two-phase area is auto 

model:  0u u f r , where 0u - flow velocity in the 

first area. We neglect viscous dissipation except 

influence in a form of velocity profile. Also we 

believe /j xT x const   , j=1,2. Then the 

dimensionless boundary task is presented in a form  

 
2 2

1

2 2

1
,

j j j j jT T T T
Pe f r

x x r r r



  
   

  
   

 
2 2

3 3 3

2 2

1
0;

T T T

x r r r


  
 

  
 (23) 

where j=1,2. As the characteristic scales for length 

and temperature 
2 ,R мT 

 are adopted. And the 

boundary conditions are stated as follows:  

  
1,r s     

1 2 ,шT T T       1 2
2 ;

T T

r r


 


 
            (24) 

  ,r r     
3 2 ,1T T        32

32 ;
TT

r r





 
           (25) 

              3,r s      3 ;w xT T                          (26) 

where 
1 1 2/ ,s R R   2 2 0 2/ ,s R r R  32 3 2/   . 

Solution of the boundary task (23)-(26) yields  

       2 2

1 1 ,0,25ш x xT T Pe r s x           (27)
 

   2

2 1 12 10,5 ,ln / /ш xT T Pe r s r s x Pe
    
 

         
 

   2

3 23 1 130,5 ,1 ln /xT Pe F r s r r  
      

where 
   

1

,
r

s

F r f r rdr 
 

   
1

r

s

dr
r F r

r
 

. From the 

boundary conditions (24) correlation of parameters 

1s , шT   is:      2

1 1 2ln 2 1 1 /ш xs s T Pe 
      . 

Here r r  is the boundary of phase transition 

different from the one at 1r   
by х=0 because of 

temperature gradient along the axis. Boundary of the 

phase transition is determined by 

         212
1

1

.
1

ln
2

ш

x

Tr x
r s

s Pe Pe

 
  




               
(28) 

On the wall following (27) we get temperature  

   2

23 1 13 30,5 .1 ln /w xT Pe F r s s r  
    

   
(29) 

The profile  f r  can be taken linear based on the 

conditions  1 1,f s     0f r  , and in general case a 

view of this function is determined by the flow 
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regime (with account of temperature distribution), 

content of slag phase, size of dispersions, etc.  

The correlation (29) allows computing the 

required wall’s temperature distribution by the given 

garnissage’s thickness
0 3r s r  . In a limit, by 

1 1s  , 

1ш мT T    solution (27) transforms into the earlier 

obtained (22). But if in narrow region   1,r r
 
due 

to abrupt increase of the melt flow velocity from 0 

at the boundary of crystallization r r  to 1 at the 

line 1r  , the regularity of the boundary evolution 

comparing to the case (22) changes. Let show it 

assuming due to small size of area  1,r r
 

the 

linear approximation     11f r r r s   . Then (28) 

accounting  
1

2

1

5 4 1
lim

36s

r r
r  








  with accuracy to 

linear terms by  1 r  gives  

      
2

12 12 .
1

5 18 3 1 6 64
8

x
r

Pe
 

 
   

 
         

(30) 

By small /x Pe  the expression (30) can be 

simplified in a linear approach: 

                  
 

2

12

,
12

1
1 6

x
r

Pe
  



 
                     

(31) 

wheares earlier in a linear approach by /x Pe  was 

got 1 2 /r x Pe   . Here from follows that account of 

the abrupt melt velocity changes in a thin layer near 

surface of crystallization leads to dependence of 

function ( )r x

 

from ratio of the heat conductivity 

coefficients for the phases. By  2 /6 1 6 0,2416    ,

 without account of ( )r x
, are underestimated,  while 

by  2 6 1  

 

inversely, overestimated. 

In other limit case, 
1 0s  ,

 
the solution (27) is  

 1 0 ,x

x
T T Pe r

Pe

 
  

 
     2 12 ,1 lnx

r
T Pe F r

r
 



    
(32) 

where  0 1 0,0T T . The expressions (32) present 

solution for viscous liquid flow, when dissipation 

can be neglected but must be accounted its influence 

on the velocity profile. Melt can be single-phase. 

Here similarly to the above considered yields  

               

0 ,
11

6
5 x

T
r x

Pe

 
  

 




                 

(33) 

or in a linear by /x Pe  approach:  

 
0

0

,
1

6 1
5 2 1

x

x

T x
r

Pe T

 
  

  

 

 
 

where from seen that ( )r x
, in contrast to the 

considered cases, depends on melt temperature on 

the channel axis (does not depend of 
2 ). On 

position of front crystallization all melt influences, 

not only the boundary area as in the previous case. 

Let consider consecutively a few of the above 

models. The unperturbed state of system is 

described by correlations (20) or boundary task 

(22)-(26). Then for small-amplitude perturbations of 

the equilibrium parameters in a linear approach  

 1 1 0 1 12j jc j w v T
t x

 


  
   

   

 
  

 
    

        
2 2 2

2 2 2 2

1 1
,j j j j

j x r r r r

   




 
  
 

   
  

   
      (34) 

  1 1
0 1

1

1
,

v v
w p

t x 


 
  

 
    

1 0,divv           

where j=1,2,     1 1 1 1 0 1, , exp ,v u v w r w i kx m t p   - 

perturbations of melt velocity and pressure. 

The boundary conditions are: on the axis:  

                 0,r      
1 0,u      

1 0  .                 (35) 

On the boundary of phase transition 

 0 1 expr R i kx m t         with accuracy to the 

linear terms by perturbations the mass and heat flux 

conditions are written as previously. On the external 

surface of a channel the impedance boundary 

condition is stated.  

 

3.2.2 Mathematical model of perturbed system 

With account of the above and (12), (13) the 

mathematical model of the perturbed system is: 

    
1 0,divv      1 1

1

1

1
,

v v
Pe p

Fo x 


 
  

 
         (36) 

 1 11 1
1 1

1 1

,
div

v T Pe
Fo x c

  


 

 
 

 
   2 22

2 2

div

Fo c

 







, 

with a difference that system (36) contains the term 

with multiplier Ре describing the action of 

convective component of the unperturbed melt flow 

in a channel. The boundary conditions are similar. 

For solution of the boundary task obtained, the 

equations for amplitudes of perturbations are got as  

 
1

1

1

,
1 dp

u
ikPe dr 




   1 1 1
1 ,0

du u v
i m kw

dr r r

 
   

 


 
1

1

1

,
mp

v
kPe r 




   
 

1
1

1

,
kp

w
kPe 




  (37) 

2 2
22 2
2 22 2

1
0,

d d m

dr r dr r

 
 
 

   
 

  
2 2

21 1
1 12 2

1d d m

dr r dr r

 
 
 

   
 

     
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2

1 1 1 1
12

1

/
,

1 /p r T T Tm r k
p

a ikPe r mPe kPe x   

  
    

  

    

     
 

where  2 2 2

1 1/ ,k ikPe a     2 2 2

2 2/k a   . Here 

n const  , therefore heat diffusivity coefficients 
ia  

are constant too. For the amplitudes of velocity and 

pressure perturbations the same designations, as for 

the perturbations themselves, are kept. 

As observed from (36), at high melt flow 

velocities  1Pe  when convective heat transfer 

prevails over molecular heat transfer, the amplitudes 

of the perturbed velocities are small, except the 

waves with kPe  . In the latter case strong 

instability of system can take place. These waves at 

any Pe  are resonant and lead to considerable 

fluctuations of melt temperature. Distribution of 

temperature in a solid phase doesn't depend on Pe  

but depends on ,k m  and frequency  .  

Boundary conditions for (37) with account (35): 

                 ,0r     
1 1 0;u                            (38) 

1,r      1 21 ,1u         
1

/ ,j j r
T r 


           

     2 1 1
2 2

1 1

;
r

d d TPe
R

dr dr a x 

 
   



 
   

 





             (39) 

           ,r s  
2 , 2/ k md dr Bi   .                   (40) 

Using (40) and accounting the correlation  

 
       

       
0 2 0 2 0 2 0 2

2

1 2 0 2 0 2 1 2

,sin nk nk nk nk

nk

nk nk nk nk

J Y s J s Y
s

J Y J Y

   


   





 

results in 

     
2 4

1 1 1 1 3 21
1 1 1

/ ,expk k jk j nr
j n k

T r J d q x  



  

     (41) 

 
 

 
2 4

12

2 1
1 1 1 2

/ exp 1
sin

jnk jnk

jnkr
j n k nk

b
T r x

s










  

  
 

   . 

 

3.2.3 Calculation of the Eigen values for the task 

Parameter R
 as it was noted, for crystalline solids 

is big owing to what there is an opportunity to 

define Eigen values from the last boundary 

condition (39) solving (37)-(40), taking into account 

(41) by means of asymptotic decomposition of 

required functions in a series by  . From (37), 

using 0 1 2 2 ...,j j j j         0 1 2 2 ...,j j j jv v v v      

0 1 2 2

1 1 1 1 ...,p p p p      yields  

0
0 1
1 ,

dwi
u

k dr
       

2 0 0 2
2 02 2

22 2

1
0,

d d m
k

dr r dr r

 


 
   

 
  

 
 

22 0 0
2 01 1 1

12 2
,0

m kPed w u dw
k w

dr r dr mPe r





 
    

  




    (42) 

2 0 0 2
2 0 0 01 1 1 1

10 1 1 12 2 2

1

,
1 1d d T Tm

u w
dr r dr r a r x

 
 
   

      
  

 


 
 

where 2 2 2

10 1/k ikPe a   . Obviously even in zero 

approach the solutions exist only when the melt 

temperature gradients by r  
and x  in equilibrium 

state are functions only of r . General solution of 

the differential equation array (DEA) (42):  

   0

1 1 2 ,q qu i c I kr c K kr    
      0

1 1 2 ,q qw c I kr c K kr   

           0 0

1 10 3 1 10

0

r

m mI r c B r K r dr  
 

   
 


       (43) 

     0

10 4 1 10

0

,
r

m mK r c B r I r dr 
 

 
 

     0

2 5 6 ,m mc I kr c K kr    

where dash means derivative by independent 

variable in a brackets, 
jc  ( 1,6j  )- constants 

computed from boundary conditions. Here: 

     
2 4

0

1 2 3 0 1 1 22 0
1 1 11 10 1

1
n j k q q

j n k

B q J r c I kr c K kr
a A

 






  

      

        1 0 1 1 2 3 2 ,expk k q q jk j ni J r c I kr c K kr d q x  
   

        

             

 

         0

1 10 10 10 10 ,m m m mA I r K r I r K r        (44) 

.
kPe

q m
mPe









 From the equations obtained is seen 

that in a resonance kPe 

 

is 0q  , and by k m  

results q m . By mPe 

 

due to properties of 
qI  

follows 0

1 0w   by all values kr , except kr  . 

 0

1B r  can be only slowly changing function x, 

then for example at 1Pe  it is necessary to keep in 

(44) only two values of 
2 :  2 2

2 10,5 ,4Pe Pe     

having equated zero coefficients at two other values 

of 
2  ( 0

1 0xT   in expression (41)).  

Boundary conditions (38)-(40) in zero approach: 

           ,0r     0 0

1 1 0;u                              (45) 

         1,r     0

1 ,0u                                  (46) 

 
 

2 4
120 0

2 2 2

1 1 1 2

,exp 1
sin

jnk jnk

nk

j k n nk

b
x

s


    






  

 
 

   

   
2 4

0 0

1 1 1 1 1 3 2

1 1 1

,expk jk k j n

j k n

d J q x      




  

  
 

0 0

2 1 1
2 2

1 1

;
r

d d TPe
R

dr dr a x 

 
   



 
   

 





                      

        ,r s    0 0

2 , 2/ k md dr Bi                     (47) 

Analysing the equations and boundary conditions 

one must note that physically substantiated 
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condition  1 0 0u    0

1 0u   
does not request zero 

values of two other velocity components at the 

symmetry axis of the channel.  

Substituting solution (43) into boundary 

conditions (45), (46), we get 0

1 0,u 
0

1 0,w   
so that 

in zero approach the melt velocity perturbations are 

absent, while for other constants is got:  

 

0

1
3

10

,
m

c
I

 


   

   , 0

5 2

4 3 ,

,m k m m

k m

K ks k Bi K ks
c

A k A Bi
  

 

  

    , 0

6 2

4 3 ,

,m k m m

k m

I ks k Bi I ks
c

A k A Bi
  

 

  
 

4 0,c      (48) 
 

By 0m   (axisymmetrical perturbations) yields 
0

1 0  ,
 
what contradicts to boundary condition (46). 

This requires more detail analysis of the boundary 

condition (45) for 
1 . Let analyze it accounting the 

situations shown in Fig.3. For symmetric modes, 

apparently, physically reasonable is an absence of 

the perturbed heat flux on a channel axis, especially 

for axisymmetric perturbations ( 0m ) as mutually 

opposite equal in size fluxes are mutually 

compensated. For perturbations with 0m  both 

boundary conditions are insufficiently physically 

substantiated, therefore approximately it is possible 

to state a condition of absence of perturbations on 

axis owing to their small amplitude and remoteness 

of an axis from boundary of phase transition, on 

which also perturbations are small:  

            0,r    0m ,  
1 / 0.d dr                 (49) 

 

      0m                   1m                     2m   

Fig.3 Symmetric and antisymmetric modes of 

perturbations by circular coordinate 
 

Considering asymptotic estimates of the 

modified Bessel and Hankel functions at the 

arguments approaching to zero, we get  0 0mI  , 

 0 0K   , owing to what with account (42) solution 

is obtained in the same form but temperature 

perturbation of symmetric and antisymmetric modes 

on an axis, generally speaking, isn't zero: 

   0 0

1 1 0 10 .0 / I     From this follows that 

temperature perturbation on the boundary of phase 

transition in relation to the corresponding value on 

axis of the channel makes   0 10I   . At Pe k  

it turns out 
10 ,k   therefore yields:  

1,k    1;             1,k       
2 2

0

/ ! ,/ 2
n

n

nk





   

where from seen that in case of long-wave 

perturbations by slow melt flow the temperature 

oscillations on the boundary of phase transition and 

on the axis are approximately equal, while short-

wave perturbations rapidly fade by power low on 

removal from the front of crystallization. 

By Pe k , approximate correlation may be used  

   10 cos / 4 sin / 4 ,kPe l i l          0,1,2,3,...,l   

where from seen that the waves on the boundary and 

on axis are stronger and may be substantial even by 

1,k  if 1kPe .  

 

 

4 Conclusion 
At the insignificant forced convection in case of 

long-wave perturbations of boundaries of phase 

transition, the temperature oscillations in all area 

can be of the same order, and short-wave 

perturbations of boundary always fade near 

boundary (the higher is Pe , the more strongly they 

fade). The models obtained are useful for analysis of 

the instability and stabilization of front 

crystallization in cylindrical channel. 
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