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Abstract: - The present paper deals with an analysis of pyramidal von Mises planar trusses with or without 
initial geometric imperfection. Models with real geometrical and material parameters were applied. The models 
had the cross section of a hot-rolled steel profile. The paper describes a dynamic relaxation method which 
monitors the potential energy of the von Mises planar truss loaded by displacement of top hinge. The 
transformed potential energy was depicted in flat and three-dimensional maps. Static eqilibrium paths and 
positions of chosen bifurcation points were found. 
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1 Introduction 
Stability is the capacity of a structural element or a 
system to resist to forces disturbing its equilibrium 
position [1]. The stability loss means a structure 
collapse, which can occur due to a very small 
displacement. The small displacement can be a 
random imperfection which is, in the structure 
element, due to production or assembly [2-4]. The 
stability and initial imperfections are key 
phenomena influencing the reliability of slender 
thin-walled plate girders [5-8] and bar structures [9], 
[10]. 

There exist numerous studies examining the 
influence of imperfections on the stability of bar 
structures loaded by static loading, see, e.g., [11], 
[12]. Many of safety critical objects are assessed by 
applying the methods of reliability theory or 
probabilistic risk assessment [13-16]. The in-
stability of static equilibrium of the structure in 
relation to initial imperfections is generally a 
negative phenomenon which can be studied by the 
sensitivity analysis [17-20]. The majority of 
reliability studies of common building structures are 
aimed at limit states, and form an important subset 
of decision-making problems based on multiple 
criteria [21-23].  

Optimization problems of real slender structures 
are usually solved on behalf of geometrically and 
material nonlinear solutions by the finite element 
method [24-26]. Theoretical possibilities of modern 
geometrically nonlinear algorithms are, however, 

much larger than those generally applied to 
engineering approaches. The application of usual 
geometrically nonlinear methods to analyse the 
deformations of real structures gives the 
deformations which are relatively small in 
comparison with lengths of bars of frame systems. 
The challenge of basic research became the stability 
problems of elastic pyramidal von Mises planar 
trusses with large displacements [27]. A large range 
of stability problems can be studied on behalf of 
algorithms of modern nonlinear mechanics [28]. 

The von Mises planar truss is a bar structure 
consisting of two bars connected with one another in 
the top hinge [29], [30]. The study of von Mises 
planar truss is important for understanding the 
stability problems of these bar structures. The aim 
of the presented study, which follows work 
published in [32], is an analysis of stability loss of 
high von Mises planar trusses with initial 
imperfections. The stability analysis is solved, 
applying the geometrically nonlinear solution. The 
conditions of static equilibrium of the nonlinear 
system are calculated by means of the so-called 
dynamic method which searches for the 
deformations of von Mises planar truss in 
dependence on forced displacement of top hinge in 
the coordinate grid. The monitoring of potential 
energy of the top hinge makes it possible to find the 
stable static eqilibrium state, the unstable static 
eqilibrium state and their mutual transition between 
each other (bifurcation point) of the von Mises 

M. Kalina
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 118 Volume 1, 2016



planar truss. The maps of transformed potential 
energies were applied to clearly illustrate the values 
of potential energies. 
 
 

2 Model and method used 
Fig.1 presents the model of the von Mises planar 
truss divided in hinges and assembled of segments 
transferring the normal stiffness of translational 
spring, and the bending stiffness of rotational 
spring, see [32]. 
 

 
 

Fig.1 Von Mises planar truss 
 

The internal force Fl in the translation spring, 
and the internal moment Mφ in the rotational spring 
will be calculated as: 

 ,,  dkMdkF lll    (1) 

where kl is the stiffness of translational spring, 
dl is the elongation of translational spring, kφ is the 
stiffness of rotational spring, and dφ is the angular 
displacement of rotational spring. The potential 
energy U, accumulated between the translational 
and the rotational springs, will be, for the von Mises 
planar truss, subsequently written as: 
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where nl is the number of translational springs, 
and nφ is the number of rotational springs. The 
deformation state of the described von Mises planar 
truss is accurately given by the position of each 
hinge. This position of hinge is determined by the 
coordinate (xi, yi), where i denotes the hinge index. 
The following equation will be used to calculate the 
elongation of translational spring: 
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where l is original length of the segment, li is the 
length of the segment after displacement. To 
calculate the angular displacement of rotational 
springs, the equation will be specified: 
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where φi is the angular displacement of segment 
i (the segment between hinges i and i+1). The 
curvature of the left bar represents the initial 
geometrical imperfection (bow imperfection). This 
geometrical imperfection was considered here in 
form of one half wave of the function sinus. 
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where a is the amplitude of one half-wave of 
function sinus, L is the bar length. Including this 
imperfection into the lengths of segments, and of 
angles of rotational springs, the bar will be modified 
(bent) still in the initial state, so that the final shape 
of von Mises planar truss will have zero stress. 

The model is formulated as a nonlinear dynamic 
system. Static eqilibrium paths of the model are 
found by dynamical relaxation thanks to the linear 
viscous damping force acting on the hinges. The 
mass of the bar is concentrated in hinges. Due to 
this assumption, the dynamic equations can be 
derived, applying the Newton principle, in the 
following equation: 
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where c is the damping coefficient, m is the mass 
of the hinges, vxi and vyi are the velocity vector 
components of the hinges, and Rxi and Ryi are the 
vector components of the resultant force Ri by which 
the springs act on the hinge. This system is solved 
by the Symplectic Euler method [31], which was 
generated by rearrangement of the explicite Euler 
method. 
 
 

3 Mapping of potential energy 
The model of the von Mises planar truss is loaded 
by the controlled displacement in point xn/2, yn/2 
(further on, only top hinge) [32]. At each 
displacement of top hinge, the von Mises planar 
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truss relaxes for a certain time. After this time, the 
potential energy of the top hinge is recorded. 

The controlled displacement takes place from 
coordinate x from the value of half of span s/2 in 
horizontal direction along the coordinate x, until the 
coordinate x of top hinge reaches the value of the 
bar length. Vertical displacement of the hinge is 
mapped within the <s/2; L>. In the step when x=L, 
the vertical displacement of top hinge takes place 
opposite to the direction of coordinate y, and the top 
hinge starts displacing back to the original 
coordinate x, recorded within the interval <L; s/2>. 
In the step, when x = s/2, the vertical displacement 
of the top hinge takes place again opposite to the 
direction of coordinate y, and the top hinge starts 
displacing in the same direction as it was in the 
initial step. The displacement of the top hinge in the 
direction y can be written as the interval <h; 0>. The 
whole course of the mapping is so repeated until the 
top hinge reaches the last step. This occurs, as soon 
as the coordinate y = 0 and, at the same time, the 
coordinate x = L. In Fig.2, there is presented the 
displacement of the top hinge. The step of 
controlled displacement is denoted p. 

 
Fig.2 Description of shifting of top hinge 

 
The potential energy of top hinge is recorded in 

such a way. To be possible to find when the von 
Mises planar truss is in the stable static eqilibrium 
state or in the unstable static eqilibrium state, it is 
suitable to draw the values of transformed potential 
energy U  in a clear illustration. The value of 
transformed potential energy is obtained from the 
relation of potential energy of the top hinge U to the 
value of potential energy of the top hinge being on 
the coordinate x in the half span of the von Mises 
planar truss 

2/nxU , for the appropriate coordinate y. 

For any coordinate y, this equation can be written in 
the following way: 

2/nxU

U
U     (7) 

4 Analysis of von Mises planar trusses 
The profile of bars was hot-rolled IPE400, with 
cross-section area A = 8446 mm2, second moment of 
area about minor axis is I = 231.3·10-6 m4, and 
Young’s modulus is E = 210 GPa. The relaxation 
time trel = 10 s. Models were generated both with 
and without initial geometrical imperfection. The 
initial geometrical imperfection was introduced on 
the left bar in form of a half wave of the function 
sinus with a = 0.1 m. The pyramidality changed 
according to angle α, see Fig.1. The following von 
Mises planar trusses: α = 45°, α = 55° and α = 60° 
were studied, on the basis of parameter α. In Fig.3 to 
Fig.8, there is presented the transformed potential 
energy (vertical axis) of these models. The 
transformed potential energy is written within the 
interval. The grafic presentation was regulated by 
the condition that, if there occurs the value higher 
than 1.2 in calculation of transformed potential 
energy, this value will be set as 1.2. The top hinge 
displaces in the step p = 0.02 m in coordinate 
raster 6~8;0x  and 5~4;0y . 

 

 
 

Fig.3 U  for von Mises truss with α = 45° without 
imperfection 

 

 
 

Fig.4 U  for von Mises truss with α = 45° with 
imperfection 
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Fig.5 U  for von Mises truss with α = 55° without 
imperfection 

 

 
 

Fig.6 U  for von Mises truss with α = 55° with 
imperfection 

 

 
 

Fig.7 U  for von Mises truss with α = 60° without 
imperfection 

 
 It can be seen in Fig.3 that the transformed 
potential energy of top hinge does not decrease at its 
displacement. The von Mises planar truss is 
becoming stable. Opposite to it, by introduction of 
imperfection or by increasing the pyramidality, the 
transformed potential energy decreases. 
 

 
 

Fig.8 U  for von Mises truss with α = 60° with 
imperfection 

 
Thanks to introduction of imperfection into the 
models, the diagrams of potential energy of the top 
hinge displacing within the rectangular raster x, y 
are not symmetrical, see Fig.8, Fig.6 and Fig.4. 
 Extremes of transformed potential energies, 
and/or courses of static eqilibrium paths can be 
found by a more throughout study. These extremes 
are divided into minimums of potential energy, 
stable static eqilibrium state, and maximums of 
potential energy, and into unstable static eqilibrium 
state. Bifurcation points can be found in models 
with imperfections. The points are concerned where 
the stable static equilibrium state is in contact with 
the unstable static equilibrium state. Coordinates 
and values of the transformed potential energy of 
bifurcation points are given in Table 1. 
 
 

Angle Symbol Coord. X Coord. Y U  

45° B1 2.98 m 2.39 m 0.9898 

55° 

B2 4.07 m 4.11 m 1.011 

B3 5.37 m 2.13 m 1.0236 

B4 2.46 m 1.86 m 0.9938 

60° 
B5 3.50 m 4.71 m 1.0092 

B6 2.16 m 1.57 m 0.9975 

Table 1 Coordinates and values of transformed 
potential energies U of bifurcation points 
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5 Conclusion 
The present paper studies stability problems by 
transformed potential energy of pyramidal von 
Mises planar trusses. The mathematical procedure 
of the applied method of dynamic relaxation which 
monitored the transformed potential energy of top 
hinge was demonstrated. The process of generation 
of flat and three-dimensional maps of transformed 
potential energy was presented. The map has shown 
that, for the von Mises planar truss with lower 
pyramidality, the transformed potential energy does 
not decrease. Further on, the maps have shown that 
introduction of imperfection or increase of 
pyramidality influences the stability of the von 
Mises planar truss. Static eqilibrium paths were 
determined and positions of bifurcation points were 
identified, based on these facts. 
 
Acknowledgement 
The article was elaborated within the framework of 
project GAČR 14-17997S. 

References: 
[1] T. V. Galambos, Guide to Stability design 

Criteria for Metal Structures, John Wiley & 
Sons, 1998, p. 911. 

[2] Z. Kala, J. Melcher, L. Puklicky, Material and 
Geometrical Characteristics of Structural Steels 
Based on Statistical Analysis of Metallurgical 
Products, Journal of Civil Engineering and 
Management, Vol.15, No.3, 2009, pp. 299–
307. 

[3] Z. Kala, Elastic Lateral-torsional Buckling of 
Simply Supported Hot-rolled Steel I-beams 
with Random Imperfections, Procedia 
Engineering, Vol.57, 2013, pp. 504-514. 

[4] J. Valeš, Effect of Random Axial Curvature on 
the Performance of Open and Closed Section 
Steel Columns, AIP Conference Proceedings, 
Vol.1558, 2013, pp. 2512-2515. 

[5] Z. Kala, J. Kala, Resistance of Plate Girders 
Under Combined Bending and Shear, In Proc. 
of the 3rd WSEAS Int. Conf. on Engineering 
Mechanics, Structures, Engineering Geology 
(EMESEG ’10), Corfu Island (Greece), 2010, 
pp. 166-171. 

[6] J. Kala, Z. Kala, Large-deflection-theory 
Analysis of the Effect of Web Initial Curvature 
on the Ultimate Strength of Steel Plate Girder, 
AIP Conference Proceedings, Vol.1389, 2011, 
pp. 1861-1864. 

[7] Z. Kala, J. Kala, M. Škaloud, B. Teplý, 
Sensitivity Analysis of the Effect of Initial 
Imperfections on the (i) Ultimate Load and (ii) 

Fatigue Behaviour of Steel Plate Girders, 
Journal of Civil Engineering and Management, 
Vol.11, No.2, 2005, pp. 99-107. 

[8] Z. Kala, J. Kala, Resistance of Thin-walled 
Plate Girders under Combined Bending and 
Shear, WSEAS Transactions on Applied and 
Theoretical Mechanics, Vol.5, No.4, 2010, pp. 
242-251. 

[9] A. Omishore, Verification of Design 
Procedures of Structural Stability using 
Probabilistic Methods of Reliability Analysis, 
AIP Conference Proceedings, Vol.1479, , No.1, 
2012, pp. 2082-2085. 

[10] Z. Kala, Reliability Analysis of the Lateral 
Torsional Buckling Resistance and the Ultimate 
Limit State of Steel Beams, Journal of Civil 
Engineering and Management, Vol.21, No.7, 
2015, pp. 902–911. 

[11] Z. Kala, J. Valeš, Modelling and Statistical 
Approaches to Lateral-torsional Buckling, 
Advanced Materials Research, Vol.969, 2014, 
pp. 259-264.  

[12] J. Valeš, Analysis of Load-carrying Capacity of 
Thin-walled Closed Beams with Different 
Slenderness, Advanced Materials Research, 
Vol.969, 2014, pp. 39-40.  

[13] Z. Kala, Influence of Partial Safety Factors on 
Design Reliability of Steel Structures - 
Probability and Fuzzy Probability Assessments, 
Journal of Civil Engineering and Management, 
Vol.13, No.4, 2007, pp. 291-296. 

[14] Z. Kala, Sensitivity and Reliability Analyses of 
Lateral-torsional Buckling Resistance of Steel 
Beams, Archives of Civil and Mechanical 
Engineering, Vol.15, No.4, 2015, pp. 1098-
1107. 

[15] A. Omishore, Uncertainty Analysis of the 
Cross-sectional Area of a Structural Member, 
In Proc. of the 4th WSEAS Int. Conf. on 
Engineering Mechanics, Structures, 
Engineering Geology (EMESEG ’11), Corfu 
Island (Greece), 2011, pp. 284–288. 

[16] A. Omishore, Uncertainty Forecasting in Civil 
Engineering, Problems and Applications, In 
Proc. of the 6th WSEAS Int. Conf. on Applied 
and Theoretical Mechanics (MECHANICS '10), 
Athens (Greece), 2010, pp. 126–128. 

[17] Z. Kala, Sensitivity Analysis of Carrying 
Capacity of Steel Plane Frames to 
Imperfections, AIP Conference Proceedings, 
Vol.1048, 2008, pp. 298-301. 

[18] Z. Kala, J. Kala, Sensitivity Analysis of 
Stability Problems of Steel Structures using 
Shell Finite Elements and Nonlinear 
Computation Methods, WSEAS Transactions 

M. Kalina
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 122 Volume 1, 2016



on Applied and Theoretical Mechanics, Vol.4, 
No.3, 2009, pp. 105-114. 

[19] Z. Kala, Sensitivity Analysis in Advanced 
Building Industry, Procedia - Social and 
Behavioral Sciences, Vol.2, No.6, 2010, 
pp. 7682-7683. 

[20] Z. Kala, J. Kala, Uncertainty and Sensitivity 
Analysis of Beam Stability Problems using 
Shell Finite Elements and Nonlinear 
Computational Approach, In Proc. of the 11th 
International Conference on Structural Safety 
and Reliability, ICOSSAR 2013, New York, 
(United States), 2013, pp. 3033-3036. 

[21] J. Antucheviciene, Z. Kala, M. Marzouk, E.R. 
Vaidogas, Solving Civil Engineering Problems 
by Means of Fuzzy and Stochastic MCDM 
Methods: Current State and Future Research, 
Mathematical Problems in Engineering, 
Vol.2015, 2015, Article number 362579. 

[22] J. Antucheviciene, Z. Kala, M. Marzouk, E.R. 
Vaidogas, Decision Making Methods and 
Applications in Civil Engineering, 
Mathematical Problems in Engineering, 
Vol.2015, 2015, Article number 160569. 

[23] J. Antucheviciene, E. K. Zavadskas, A. 
Zakarevicius, Ranking Redevelopment 
Decisions of Derelict Buildings and Analysis of 
Ranking Results, Economic Computation and 
Economic Cybernetics Studies and Research, 
Vol. 46, No.2, 2012, pp. 37-62. 

[24] F. Fedorik, J. Kala, A. Haapala, M. Malask, 
Use of design optimization techniques in 
solving typical structural engineering related 
design optimization problems, Structural 
Engineering and Mechanics, Vol.55, No.6, 
2015, pp. 1121-1137. 

[25] J. Kala, P. Hradil, M. Bajer, Reinforced 
concrete wall under shear load – Experimental 
and nonlinear simulation, International Journal 
of Mechanics, Vol.9, 2015, pp. 206-212. 

[26] J. Atkočiūnas, T. Ulitinas, S. Kalanta, G. 
Blaževičius, An Extended Shakedown Theory 
on an Elastic–plastic Spherical Shell, 
Engineering Structures, Vol.101, 2015, 
pp. 352-363. 

[27] S.S. Ligarò, P.S. Valvo, Large Displacement 
Analysis of Elastic Pyramidal Trusses, 
International Journal of Solids and Structures, 
Vol.43, No.16, 2006, pp. 206-212. 43, pp. 
4867-4887. 

[28] M. Kalina, Static Task of von Mises Planar 
Truss Analyzed using the Potential Energy, AIP 
Conference Proceedings, Vol.1558, 2013, pp. 
2107-2110. 

[29] R. von Mises, Über die Stabilitätsprobleme der 
Elastizitätstheorie, ZAMM 3, 1923, pp. 406-
422. 

[30] R. von Mises, J. Ratzersdorfer, Die 
Knicksicherheit von Fachwerken, ZAMM 5, 
1925, pp. 218-235. 

[31] E. Hairer, Ch. Lubich, G. Wanner, Geometric 
Numerical Integration Illustrated by the 
Störmer/Verlet method, Acta Numerica, 
Vol.12, 2003, pp.399-450. 

[32] P. Frantík, Simulation of the stability loss of 
the von Mises truss in an unsymmetrical stress 
state, Journal Engineering Mechanics, Vol.14, 
2007, pp.155-162. 

 

M. Kalina
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 123 Volume 1, 2016




