
Automated Custom Named Entity Recognition and Disambiguation

LEVON STEPANYAN
Akian College of Science and Engineering

American University of Armenia
40 Marshal Baghramyan Ave, Yerevan 0019

REPUBLIC OF ARMENIA
levon_stepanyan@edu.aua.am

Abstract: - Named Entity Recognition (NER) and Disambiguation are sub-tasks in Natural Language
Processing (NLP) that seek to identify and classify named entities in the text into their designated categories.
With recent advancements in Deep Learning it is possible to use attention mechanisms and recurrent networks
in order to produce reliable NER predictions. The use of NER ranges from profanity detection to extracting
meta-data from documents. However, the greatest shortcoming of the classical NER models is the limited
number of predefined classes that are set in the task (i.e. Person (PER), Location (LOC),
Companies/institutions (ORG) etc.). With this limitation in mind we proposed a novel fast approach (FastEnt)
to tackle the task of identifying and detecting Custom Named Entities (CNE) that are not limited to definition.
The task was split into 2 parts, where we initially create a basis space of words using several examples of the
entity we are trying to identify, by using search across the word representation found through FasText and
Word2Vec. We further complete automated online scraping from several sources such as Reddit in order to
obtain an annotated corpus that will be used in the modeling step.
After producing the Annotated corpus with the designated CNE we train a dilated convolutional neural network
with recurrent mechanisms to complete NER on this new entity. We test our findings on classic NE’s
mentioned above and are able to reliably reproduce the State-of-the-art (SOTA) results and further show
consistent results with this approach on several custom named entity tasks.

Key-Words: - NLP, NER, Neural Networks, CRF, Parallelization, databases, API.

1 Introduction

Before starting the background of Named Entity
Recognition (NER) we need to introduce several
concepts for further use. Firstly, the notion of
named entity must be explicitly defined.

Definition 1: A named entity is a term for which
one or many strings, such as words or phrases,
stands (fairly) consistently for some referent.

This definition is closely associated to the concept
of the rigid designator introduced by Kripke and
Saul [1].

Definition 2: A rigid designator known as the
absolute substantial term is a type of a term that
designated a concept uniquely in the field of its
existence while not identifying anything else outside
of that field in the process.

The task of Named Entity Recognition involves
identifying and pointing out the strings that fall into
some named predetermined entity class(es), in the
text. Although, attempts were made to create fixed

rigid designators as entities for NER, in common
practice one must deal with numerous referents that
cannot be considered philosophically "rigid". This
can be clearly shown by discussing the following
example:

It was an interesting time for
the Ford Motor Company.

Here we can easily recognize that the string
“Ford Motor Company” refers to the
organization, yet we must not overlook the fact
that the word “Ford” can easily refer to many
entities.

2 Problem Formulation

The named entity recognition task can be
conceptually separated into two problems: detection
of probable strings of named entities and the
classification of the detected strings by the type of
entity they refer to.

Levon Stepanyan
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 1 Volume 5, 2020

Fig.1. An example of classification by type.

The first part of the problem can be described as
a segmentation task, where the model must try to
identify the location of probable entities from the
contiguous spans of tokens. The second phase of the
problem requires choosing an ontology in order to
be able to classify the segmented strings.
The results of these two tasks are evaluated using
several metrics.
• Precision: Number of predicted entity string

spans that line up exactly with spans in the
evaluation data.
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
|{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝}⋂{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝}|

|{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝}|

• Recall: Number of names in the evaluation data
that appear at exactly the same location in the
predictions.
𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

=
|{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝}⋂{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝}|

|{𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝}|

• F1: This metric is the harmonic mean of
Precision and Recall.

𝐹𝐹1 =
2

1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

+ 1
𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

= 2 ∙
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

2.1 Existing Solutions

Several common approaches have been used in
order to implement NER systems. One set of
solutions relies heavily on grammar-based rules and
hand-crafted features, during the processes of
segmentation and classification. The precision of
this types of models are generally higher than
compared to other approaches, however it must be
noted that models lack significantly in recall and
require months of work of experienced
computational linguists [2].

Fig.2. Basic dependencies in entity recognition

Usually NER is tackled using statistical and
machine learning approaches. A frequent
shortcoming of this kind of models is the
requirement of a large hand annotated training and
testing datasets. Some methods offer semi-
supervised annotation modules in order to overcome
this issue. The most prominent implementations of
NER systems include a variation or an ensemble of
the following methods:

1. Hidden Markov Models
2. Conditional Random Fields
3. Neural Networks (Convolution and

Recurrence included)
All of these methods show significant promise and
good results on the task. Each of the methods will
be discussed in Methodology section. Even in the
early implementations of NER systems such as
Zhou et al. [3] we can see that the system based on
Markov models achieves solid precision and recall
on the predefined classes of CoNLL dataset [4].
With the advancement of hardware, more
computationally intensive methods came into play.
The efforts of Ling et al [5] and Lee, C. (2017) [6]
signify the trend the current solutions are moving
towards along with their results.

Eventually mixing the aforementioned
techniques results in master systems such as
Explosion’s Spacy, Stanford's CoreNLP and several
others.

2.2 Current Challenges

One of the most limiting factors of NER is the
fixed number of classes of entities that the current
systems use. Indeed, the commonly used CoNLL
entity tags do not in any way cover the vast majority
of probable entities that a user might be interested in
segmenting. However, developing a corpora for
custom named entity recognition is also a
cumbersome task requiring an annotated dataset as
mentioned in previous sub-section, thus effectively
confining the researcher to hard and unnecessary

Levon Stepanyan
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 2 Volume 5, 2020

labor during the project. A probable solution will be
offered to each of these problems in this article.

3 Methodology

3.1 Hidden Markov Models

The Hidden Markov Model is one of the most
important machine learning models in speech and
language processing. Hidden Markov Models
(HMM) are doubly embedded stochastic processes,
utilized for modelling diverse situations that are
characterized by evolution of some events that
depend on some internal factors. These internal
factors are more commonly referred to as states,
while the events are called observations. To grasp
an intuition behind HMMs we can think of it as a
closed system, that has n states, which is required
to reside in on one of the states at a given fixed
point in time and can also make transitions between
those n states with some predetermined probability
while emitting observations with some other
predetermined probability set [7].

Definition 3: A model 𝜎𝜎(𝐴𝐴,𝐵𝐵,𝜋𝜋,𝑝𝑝,𝑚𝑚) is called a
Hidden Markov Model if:
 1. n - signifies the number of states.
 2. m - signifies the number of possible emissions.
 3. π - is a vector, where an element πi signifies the
probability of being at state i during the time step 1.
 4. A - is the transition matrix, where Ai,j signifies
the probability of transferring from state i to j.
 5. B - is the emission matrix, where Bi,j signifies
the probability of emitting the symbol j while in
state i.
 6.
𝑃𝑃�𝑞𝑞𝑟𝑟+1 = 𝑆𝑆𝑗𝑗 �𝑞𝑞𝑟𝑟 = 𝑆𝑆𝑝𝑝� =
𝑃𝑃�𝑞𝑞𝑟𝑟+1 = 𝑆𝑆𝑗𝑗 �𝑞𝑞𝑟𝑟 = 𝑆𝑆𝑝𝑝 , 𝑞𝑞𝑟𝑟−1 = 𝑆𝑆𝑘𝑘 ,𝑞𝑞𝑟𝑟−2 = 𝑆𝑆𝑟𝑟 , … �
where Sk are the states and qt in the state at time t.

 It must be noted that this definition asserts that
only the present state matters when predicting the
future states. In the context of named entity
recognition our aim is to find an optimal tag
sequence 𝑇𝑇1

𝑝𝑝 = 𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑝𝑝 for the given token
sequence 𝐺𝐺1

𝑝𝑝 = 𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑝𝑝 that maximizes:

log𝑃𝑃 (𝑇𝑇1
𝑝𝑝 |𝐺𝐺1

𝑝𝑝) = log𝑃𝑃 (𝑇𝑇1
𝑝𝑝) + log

𝑃𝑃(𝑇𝑇1
𝑝𝑝 ,𝐺𝐺1

𝑝𝑝)
𝑃𝑃(𝑇𝑇1

𝑝𝑝) ⋅ 𝑃𝑃(𝐺𝐺1
𝑝𝑝) (1)

In order to simplify the equation further we can
assume mutual information independence.

log𝑀𝑀 𝐼𝐼(𝑇𝑇1
𝑝𝑝 ,𝐺𝐺1

𝑝𝑝) = �𝑀𝑀𝐼𝐼(𝑟𝑟𝑝𝑝 ,𝐺𝐺1
𝑝𝑝)

𝑝𝑝

𝑝𝑝=1

 (2)

can be written as:

log
𝑃𝑃(𝑇𝑇1

𝑝𝑝 ,𝐺𝐺1
𝑝𝑝)

𝑃𝑃(𝑇𝑇1
𝑝𝑝) ⋅ 𝑃𝑃(𝐺𝐺1

𝑝𝑝) = � log
𝑃𝑃(𝑟𝑟𝑝𝑝 ,𝐺𝐺1

𝑝𝑝)
𝑃𝑃(𝑟𝑟𝑝𝑝)

 (3)
𝑝𝑝

𝑝𝑝=1

Plugging equation 2 into equation 1 yields the
following general equation that we use:

log𝑃𝑃 (𝑇𝑇1
𝑝𝑝 |𝐺𝐺1

𝑝𝑝) = log𝑃𝑃 (𝑇𝑇1
𝑝𝑝) −� log𝑃𝑃 (𝑟𝑟𝑝𝑝)

𝑝𝑝

𝑝𝑝=1

+ � log𝑃𝑃 (𝑟𝑟𝑝𝑝|𝐺𝐺1
𝑝𝑝) (4)

𝑝𝑝

𝑝𝑝=1

Fig.3. HMM model visualization - transition states

Hidden Markov Models conforming to the

following rule completely or with slight variations
were widely used in NER. However, as of today
they are mostly used in combination with other
techniques.

3.2 Conditional Random Fields

CRFs are a type of sequence modeling
techniques that are used for structured prediction
and have found their neat application inside NER.
CRFs can be described as discriminative undirected
probabilistic graph model used to encode known
relations between the designated observation while
constructing consistent interpretations.
A formal definition given by Lafferty, McCallum
and Pereira [8] states that:

Definition 3: A CRF on observations X and random
variables Y is defined as follows:
Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a graph such that, 𝑌𝑌 = (𝑌𝑌𝑟𝑟)𝑟𝑟∈𝑉𝑉 ,
meaning that Y is indexed by the vertices of G.
Then (𝑋𝑋,𝑌𝑌) is a conditional random field when the
random variables 𝑌𝑌𝑟𝑟, conditioned on X, obey the
Markov property with respect to the graph:
𝑝𝑝(𝑌𝑌𝑟𝑟|𝑋𝑋},𝑌𝑌𝑤𝑤 ,𝑤𝑤 ≠ 𝑟𝑟 = 𝑝𝑝(𝑌𝑌𝑟𝑟|𝑋𝑋},𝑌𝑌𝑤𝑤 ,𝑤𝑤 ∼ 𝑟𝑟, where
𝑤𝑤 ∼ 𝑟𝑟 means that w and v are neighbors in G.

Accordingly, we can conclude that CRF is an
undirected graphical model whose nodes can be

Levon Stepanyan
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 3 Volume 5, 2020

explicitly divided into two disjoint sets X and Y and
the conditional probability distribution 𝑝𝑝(𝑋𝑋|𝑌𝑌) can
be modeled.
When applied to the NER task, CRFs share some
common properties with HMMs. The tokens in the
text can be conventionally labeled as the
observation sequence while the named entities
correspond to the tag sequence. We aim to model
the conditional probability of a state sequence given
the observation sequence. It can be mathematically
described as follows:

𝑃𝑃(𝑆𝑆|𝑂𝑂) =
1
𝑍𝑍𝑝𝑝

exp���λ𝑘𝑘𝑓𝑓𝑘𝑘(𝑆𝑆𝑟𝑟−1,𝑆𝑆𝑟𝑟 ,𝑂𝑂, 𝑟𝑟)
𝑘𝑘

𝑇𝑇

𝑟𝑟=1

� (5)

Where 𝑓𝑓𝑘𝑘(𝑆𝑆𝑟𝑟−1,𝑆𝑆𝑟𝑟 ,𝑂𝑂, 𝑟𝑟) is the feature function
whose weight λ𝑘𝑘 is tuned during the training
process. We define the conditional probability of a
label sequence based on total probability over the
state sequences, i.e. 𝑃𝑃(𝑟𝑟|𝑝𝑝) = ∑ 𝑃𝑃(𝑝𝑝|𝑝𝑝)𝑝𝑝:𝑟𝑟(𝑝𝑝)=𝑟𝑟 ,
where 𝑟𝑟(𝑝𝑝) is the sequence of labels corresponding
to the states in the sequences. 𝑍𝑍0 is the
normalization factor over all state sequences.

𝑍𝑍𝑝𝑝 = � exp���𝜆𝜆𝑘𝑘𝑓𝑓𝑘𝑘(𝑆𝑆𝑟𝑟−1,𝑆𝑆𝑟𝑟 ,𝑂𝑂, 𝑟𝑟)
𝑘𝑘

𝑇𝑇

𝑟𝑟=1

� (6)
𝑝𝑝

3.3 Neural Networks

Artificial Neural Networks are one of the most
prominent tools for binary and multi-class
classification problems. During several decades of
development various architectures of NN arouse,
such as Feedforward Neural Network (FNN - the
basic ones), Recursive Neural Network (RNN) and
Convolutional Neural Network (CNN). In this
section we will overview the basics of the above
structures. There are many useful and informative
researches, which thoroughly elaborate on the
aforementioned architectures [9], that is why this
paper will be concise on the literature overview.
The most important concept to understand is a Deep
Neural Network - this consists of several layers of
artificial neurons which, in their turn, are basic
computational nodes.

Fig.4. Single artificial neuron.

Each computational node (neuron) gets as an

input a sequence of numbers 𝑥𝑥𝑝𝑝 . Each 𝑥𝑥𝑝𝑝 is
multiplied of its corresponding weighting

coefficient and a bias 𝑏𝑏 is added to the sum of
multiplications. This sum is given as an input to the
neural node function, whose result is the final output
of the neuron. There are several well-known choices
for a neuron function, such as 𝑟𝑟𝑟𝑟𝑝𝑝ℎ 𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑔𝑔𝑚𝑚𝑝𝑝𝑝𝑝𝑟𝑟. A
single sigmoid neuron can't do much than to classify
the data into two basic categories with a threshold.
To create a more advanced classifier numerous
neurons are combined - creating a layer, and several
layers combined to form a classic FNN. A standard
FNN consists of three categories of neural levels,
i.e. input, hidden and output layers, as depicted
below:

Fig.5. Multi-layer Neural Network

At the first place, the network is initialized with

random weights and biases for each neural cell,
which then are optimized in regards to the error
function - thus trying to solve the classification
problem.

The Convolutional NN is one step advanced in a
sense that it has additional layers of convolution and
pooling. Convolutional layers are different from
ordinary neural layer in a way that each neuron will
get as an input only a subset of the inputs. The basic
concept of CNN would be to divide the neurons into
subgroups, forming feature map - each of the
subgroup will optimize itself in recognizing a
specific "feature" in the data. Finally, pooling layers
are used for filtering out the useless feature map
subgroups, thus trying to get rid of useless
"features" for our classifier.

4 Problem Solution

The design of the system created for end-to-end
Custom Named Entity Recognition can effectively
be segmented into three sub-modules: Dataset
Generation, Automatic Annotation and Model
Training. Let us dive into each of these components
separately.

Levon Stepanyan
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 4 Volume 5, 2020

4.1 Dataset Generation
One of the main issues during the creation of a

new custom entity is the lack of understanding of
what the entity must represent and what ideas and
concepts it must cover. The viewpoint that we
maintain is that any entity that can be described with
a list of words can be completed using their
synonyms. This intuition is akin to the concept of
space spanning vectors in linear algebra. The
descriptor words effectively try to span the concept
behind the entity we are trying to construct,
meaning that by creating a dataset comprised of the
descriptors and their synonyms, we aim to create a
complete space of ideas and words relevant to that
entity. For this very purpose we use Word
Embeddings in order to obtain words similar to the
descriptors and use pre-processing techniques to get
rid of irrelevant strings that made their way through
to the initial dataset.

4.2 Word Embeddings

Word embeddings are the collective set of
techniques that try to represent a single word string
as a vector of some predefined dimension, thus
creating a string to vector mapping for each of the
words we are interested in. The most conventional
methods of embedding today are the word2vec,
GloVe, FastText and PoincareEmbeddings.

Fig.6. Word embedding transformation.

Originally created by Mikolov et al. 2013 [10],

word2vec was the first neural embedding model that
is intensely used by the researchers up till this day.
There a are three different parameter learning types
that it utilizes.
• One-word context - We are considering one

word per one context. This approach is known
as Continuous Bag Of Words (CBOW). The
aim is to obtain an appropriate vector
representation for the word.

• Multiple word context -Multiple context words
are considered along the word itself. Here we
consider the word in relation with other words
in text. The aim is once again to obtain an
appropriate vector representation for the word.

• Skip-gram - The reversed situation of multiple
word context. Here we try to predict multiple
context words given one word on the input.

Fig.7. One Context Word

Fig.8. Multiple Context Words

Fig.9. Skip-Gram

GloVe utilizes the structure of the whole

observed corpus in order to capture the meaning of
one word embedding. After training on global co-
occurrence counts of words GloVe minimizes the
least-squares error, consequently obtaining word

Levon Stepanyan
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 5 Volume 5, 2020

vectors with meaningful substructure. The design
sufficiently preserves words similarities with vector
distance.

The FastText model takes is quite alike
word2vec, yet it adds new semantic features into the
mix. It also considers the internal structure of words
by splitting them into a bag of character n-grams
and adding to them a whole word as a final feature.
The complete set of operations is defined at
Bojanowski et al [11].

The most recent advancement is Poincare's
Embeddings that uses hyperbolic geometry for
capturing hierarchical properties of the words that
are hard to capture in Euclidean space. The use of
hyperbolic geometry along with the Poincare ball
allows to obtain and represent an interesting
property that the distance from the root of the tree to
its leaves grows exponentially with the addition of
each new child. The whole optimization process
with in-depth derivations and definitions can be
found in the paper Nickel et al [12].

Using the aforementioned embeddings, we are
able to obtain representation and compute similar
words from those representations, which is the goal
that we initially had in mind.

4.3 Preprocessing

It must be noted that even after utilizing word
embeddings to get a dataset of similar words, we are
still bound to have irrelevant words in that dataset.
In order to get rid of them we must filter out the
extraneous and unrelated words. The task has to be
automated in order to avoid the time constraints and
cost of human labor.

In order to complete this we can start by looking
into the semantic structure and linguistic features of
the words. A very simple example of preprocessing
would be pseudo-deduplication, meaning that words
that are almost semantically identical with only a
slight set of differences i.e. "Erik", "Eric" will be
removed. We can also look into the Part-Of-Speech
(POS) tags of each word and determine the
relevance of the word, for example knowing that
usually adjectives are not a common part of the
NER task we can delete them. The link to the
documentation for the complete set of preprocessing
tools is given in the next chapter.

4.4 Annotation

As previously mentioned, annotation is a very
costly task that requires either long hours of human
labor, or some supervised approaches to complete
pseudo-annotation. In the system created in this
research we aim to have a complete annotator

system that is language independent and thoroughly
deterministic.

4.4.1 Contextualization

After generating the raw word dataset of words
as described in chapter 3, we have to put those
words in several contexts in order to be able to get a
trainable dataset for our further steps. We utilize
several APIs (Reddit, Twitter, news etc.) in order to
search for relevant sentences and paragraphs inside
the comments, topics and texts within these
networks. We try to construct optimized queries
with adequate amount of filtering in order to retrieve
the required amount of necessary content.

After this, the task of annotation shrinks down to
finding the position of relevant designated sub-
strings in the derived context.

4.4.2 Parallelization

It must be noted that although the queries to the
APIs are optimized, completing every request
iteratively one after another might take a significant
amount of time and take a heavy toll on the CPU.
To overcome this issue, we decided to implement a
parallel computing scheme for the contextualization
routine.

Idealistically, the speedup from parallelization
must be linear, meaning that doubling the number of
processing cores must split the time of computation
in half. Yet, very few parallel algorithms achieve
optimal speedup. Most of them have a near-linear
speedup for small numbers of processing elements,
decaying swiftly as the number of processing
elements increases. The potential speedup of an
algorithm after parallelization is given by Amdahl's
law:

𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 (𝑝𝑝) =
1

1 − 𝑝𝑝 + 𝑝𝑝
𝑝𝑝

 (7)

• S - the speedup in latency of execution of the
whole task

• s - is the speedup in latency of the execution of
the parallelizable part of the task

• p -is the percentage of the execution time of
the whole task concerning the parallelizable
part of the task before parallelization.

Since 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 < 1
1−𝑝𝑝

, it shows that a small part of
the program which cannot be parallelized will limit
the overall speedup available from parallelization.

Levon Stepanyan
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 6 Volume 5, 2020

Fig.10. Visualization of Amdahl’s Law

We make use of asynchronous threads that work

concurrently in order to complete the process of
contextualization in parallel.

4.4.3 CouchDB

In order to make the collected data editable and
reusable we chose to create a structured database for
each of the entities that we aim to create. After
careful consideration CouchDB was chosen as the
database system for storing the generated structures.
Apache CouchDB is easy to use and has a vast focus
on scalable architecture. It has a document-oriented
NoSQL database architecture. JSON structures are
used to store the data, JavaScript is used as the
primary query language and MapReduce, and HTTP
are utilized for an API. We must note significant
difference between CouchDB and relational
database structures. CouchDB does not store data
and relationships in tables. Instead, each database is
a collection of independent documents. Each
document maintains its own data and self-contained
schema.

In order to dive further in the discussion of
CouchDB let define some key concepts.

Definition 4: Multi-version concurrency control, is
a concurrency control method commonly used by
database management systems to provide concurrent
access to the database and in programming
languages to implement transactional memory.

Definition 5: Eventual consistency is a consistency
model used in distributed computing to achieve high
availability that informally guarantees that, if no
new updates are made to a given data item,
eventually all accesses to that item will return the
last updated value.

It is important to note that CouchDB implements
both of these concepts, effectively allowing us to
handle a high volume of concurrent reads and writes
without conflict. A more in-depth analysis of the
system can be found at Han et al [13].

4.5 Training the Model

After obtaining the contextualized and annotated
data the most logical last step is to train a model for
recognizing the designated entity. We make us of
the Spacy pipeline in order train a Neural Network
with iterated Dilated convolutions. The architecture
and optimization of the network is fairly similar to
the one described by Strubell et al [14].

4.6 Experiments

As a benchmark we choose to reconstruct the
results obtained on classic Entity types PER and
LOC. The dataset constructed for the task along
with the full annotation set was able to reproduce
the SOTA results obtained by Strubell et al [14]
with marginal differences across several runs, thus
proving the feasibility of using the dataset
generation and annotation module for common
entities.

In order to expand the experiment into custom
entity types we choose to scrape the a set of
dictionaries for entities that conformed to drugs (i.e.
cocaine, heroine) and constructed an annotated test
set for the task. During the dataset generation step
we decided to use only 2 examples of the type for
enriching and obtaining the full space that covered
the entity. We further created an annotated training
set that was completely independent of the testing
set. After the completion the NER model was
trained obtaining 85% on that unknown entity type.
We further validated that the dataset enrichment
module was able to produce a set of
words/sentences that overlapped with the set of
unique testing words that spanned the space at 93%.
This proof is sufficient to show that the method
performed incrementally well on this unknown task
with sufficient results.

5 Conclusion

During the course of research an end-to-end
framework for Custom Named Entity Recognition
was developed. The system is named “Fastent” and
can be found on GitHub or its very own website. An
elaborate documentation was derived describing the
processes of installation and the use of each of the
sub-modules. The system has been tested on some

Levon Stepanyan
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 7 Volume 5, 2020

https://github.com/fastent
https://fastent.github.io/
https://fastent.github.io/docs

common NER tasks and the baselines should be
reported in the documentation after the full scale of
testing is complete. It must be noted that the
modules in the system are mostly (only dataset
generation requires explicit word vectors, which are
initially supplied to be for English) language
independent. Although a thorough routine was
derived for complete custom NER, the system can
be improved by the addition of Bidirectional LSTM
models and more model training routines.

References:
[1] Kripke, S., "Identity and necessity.",

Perspectives in the Philosophy of Language,
1971, pp. 93-126.

[2] Kapetanios E, Tatar D, Sacarea C., Natural
language processing: semantic aspects. CRC
Press, 2013.

[3] Zhou, GuoDong, and Jian Su. "Named entity
recognition using an HMM-based chunk
tagger." In proceedings of the 40th Annual
Meeting on Association for Computational
Linguistics, 2002, pp. 473-480.

[4] Sang, E. F., & De Meulder, F., Introduction to
the CoNLL-2003 shared task: Language-
independent named entity recognition. 2003,
arXiv preprint cs/0306050.

[5] Ling, W., Luís, T., Marujo, L., Astudillo, R.F.,
Amir, S., Dyer, C., Black, A.W. and Trancoso,
I., Finding function in form: Compositional
character models for open vocabulary word
representation. 2015, arXiv preprint:
1508.02096.

[6] Lee, C., “LSTM-CRF models for named entity
recognition.”, IEICE Transactions on
Information and Systems, 100(4), 2017,
pp.882-887.

[7] Rabiner, Lawrence R. "A tutorial on hidden
Markov models and selected applications in
speech recognition." Proceedings of the IEEE,
Vol 77, No. 2, 1989, pp. 257-286.

[8] Lafferty, J., McCallum, A., & Pereira, F. C.,
Conditional random fields: Probabilistic
models for segmenting and labeling sequence
data 2001.

[9] Lample, G., Ballesteros, M., Subramanian, S.,
Kawakami, K., & Dyer, C., Neural
architectures for named entity recognition.
2016, arXiv preprint arXiv:1603.01360.

[10] Mikolov, T., Chen, K., Corrado, G., & Dean, J.,
Efficient estimation of word representations in
vector space., 2013, preprint arXiv:1301.3781.

[11] Bojanowski, P., Grave, E., Joulin, A., &
Mikolov, T., Enriching word vectors with

subword information. Transactions of the
Association for Computational Linguistics, No.
5, 2017, pp. 135-146.

[12] Nickel, M., & Kiela, D., Poincaré embeddings
for learning hierarchical representations. In
Advances in neural information processing
systems, 2017, pp. 6338-6347.

[13] Han, J., Haihong, E., Le, G., & Du, J. Survey
on NoSQL database in Pervasive computing
and applications (ICPCA), 2011, pp. 363-366.

[14] Strubell, E., Verga, P., Belanger, D., &
McCallum, A., Fast and accurate entity
recognition with iterated dilated convolutions.
2017, preprint arXiv:1702.02098.

Levon Stepanyan
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 8 Volume 5, 2020

