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Abstract: - Voice control is the most prominent feature of smart home environment. In this paper, we proposed 

a voice command module that enables users hands-free interaction with the smart home environment. We 

presented three components required for simple and efficient control of the smart home devices. Wake up word 

component allows actual voice command processing. Speech recognition component maps spoken voice 

commands to text and Voice Control Interface parse that text into appropriate JSON format for home 

automation. We evaluate the possibility of using the voice control module in a smart home environment by 

separately analyzing each component of the module. 
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1 Introduction 
Smart home environment represents an automation 

system in which different sensors and intelligent 

devices work together providing efficient service 

functions to improve comfortable quality of house 

living. The smart environment can be seen as a 

promising way of supporting independent living 

providing in-home assistance which is especially 

significant to people with some disabilities [1]. 

Speech recognition is considered to be a bridge for 

better and more natural human-computer interaction 

[2]. Recent advances in automatic speech 

recognition (ASR) made this technology one of the 

essential features of the smart home automation 

(HA) system [3][4]. Our goal is to enable voice 

control within the smart home laboratory that can be 

used to control a large number of devices such as 

lights, plugs, sensors, dimmers, etc. In this paper, 

we present the architecture of the voice control 

module which has a role of converting the spoken 

commands to text and then mapping them to the 

appropriate actions in the HA system. Module 

continuously listens and process the sounds from the 

environment to ensures hands-free interaction. To 

minimize the number of cases in which the action in 

the HA system is triggered without actual user 

intent, we introduced wake up word (WUW) 

detection mechanism. 

 

 

2 System Architecture 
In this section, we described the architecture of the 

proposed voice control module. The proposed 

module consists of Wake-Up Word detection 

module, Speech recognition engine and Voice 

command interface as shown in Fig 1. 
 

 

Figure 1 Voice Command Module 

First, we will give a brief introduction inside deep 

network architecture behind our WUW and ASR 

components followed by the description of each 

component. 

 

2.1 Deep Network Architecture 
Because of the ability to handle sequential 

information almost all end-to-end speech 

recognition systems use some recurrent neural 

network in their pipeline [5]-[8].  In the RNN, the 

internal representation of dynamic speech features is 

formed by feeding the low-level acoustic features 

into the hidden layer together with the recurrent 
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hidden features from the history. As an 

improvement of conventional RNN, Bidirectional 

Recurrent Neural Networks (BRNNs) can make use 

of future context. Data is processed both directions 

with two separate hidden layers by splitting the state 

neurons of a regular RNN in a part that is 

responsible for the positive time direction and part 

for the negative time direction which are then fed 

forwards to the same output layer as shown in Fig2.   

 

Figure 2 Bidirectional LSTM 

Outputs from forward states are not connected to 

inputs of backward states, and vice versa [9]. Given 

the input sequence x = (x1… xt) BRNN computes the 

forward hidden sequence �⃗� , the backward hidden 

sequence �⃖� and output sequence y=(y1…yt) with the 

following iterative process: 

    𝐡𝑡
⃗⃗⃗⃗⃗ = (𝐖𝑥ℎ⃗⃗⃗𝐱𝑡 + 𝐖ℎ⃗⃗⃗ℎ⃗⃗⃗ �⃗⃗⃗�𝑡−1 + 𝐛ℎ⃗⃗⃗)                 (1) 

 𝐡𝑡
⃖⃗⃗⃗⃗ = (𝐖𝑥ℎ⃗⃗⃐𝐱𝑡 + 𝐖ℎ⃗⃗⃐ℎ⃗⃗⃐ �⃗⃗⃖�𝑡+1 + 𝐛ℎ⃗⃗⃐)          (2) 

     𝐲𝑡 =  𝐖ℎ⃗⃗⃗𝑦𝐡𝑡
⃗⃗⃗⃗⃗ + 𝐖ℎ⃗⃗⃖𝑦𝐡𝑡

⃖⃗⃗⃗⃗ + 𝐛𝑦   (3) 

 

Learning RNN parameters 𝐖ℎ𝑦 , 𝐖𝑥ℎ and 𝐖ℎℎ goes 

by using backpropagation through time (BPTT) 

algorithm. For learning those weight matrices of an 

RNN unfolds the network in time and propagates 

error signals backwards through time. BPTT can be 

viewed as extension of the classic backpropagation 

algorithm for feed-forward networks, where the 

stacked hidden layers for the same training frame t, 

are replaced by the T same single hidden layers 

across time t = 1,2,3,...,T. The use of the state space 

in the RNN enables its representation and learning 

of sequentially extended dependencies over 

arbitrarily long sequences but in practice has been 

shown that they are not capable of looking far back 

into the past in many types of input sequences. 

Generally, it is difficult to train RNN with 

commonly used activation functions (tanh, sigmoid, 

RELU) due to the exploding and vanishing gradient 

[10]. One of the solutions is to embed the memory 

structure like long-short-term memory cells (LSTM) 

[11]. The structure of a single LSTM memory cell is 

illustrated in Fig 3. 

 

Figure 3 Architecture of simple LSTM 

For LSTM, the computation at the time step t can be 

formally written as follows: 

𝒄𝑡 = 𝒇𝑡 • 𝒄𝑡−1 + 𝒊𝑡 • 𝑡𝑎𝑛ℎ(𝑾(𝑥𝑐)𝒙𝑡 + 𝑾(ℎ𝑐)𝒉𝑡−1 + 𝒃(𝑐)) (4) 

𝒐𝑡 =  𝜎(𝑾(𝑥𝑜)𝒙𝑡 + 𝑾(ℎ𝑜)𝒉𝑡−1 + 𝑾(𝑐𝑜)𝒄𝑡 + 𝒃(𝑜))             (5) 

𝒊𝑡 = 𝜎(𝑾(𝑥𝑖)𝒙𝑡 + 𝑾(ℎ𝑖)𝒉𝑡−1 + 𝑾(𝑐𝑖)𝒄𝑡−1 + 𝒃(𝑖))             (6) 

𝒇𝑡 =  𝜎(𝑾(𝑥𝑓)𝒙𝑡 + 𝑾(ℎ𝑓)𝒉𝑡−1 + 𝑾(𝑐𝑓)𝒄𝑡−1 + 𝒃(𝑓))         (7) 

𝒉𝑡 = 𝒐𝑡 • 𝑡𝑎𝑛ℎ (𝒄𝑡)     (8) 

Above formulas describe five different types of 

information at time t representing the input gate, 

forget gate, cell activation, output gate, and hidden 

layer, where output 𝜎 is the logistic sigmoid 

function, W is weight matrices connecting different 

gates and b are the corresponding bias vectors. 

 

2.2 Connectionist Temporal Classification 
Connectionist Temporal Classification (CTC) [12] 

is one of the most successful sequence-to-sequence 

learning algorithms for RNNs. CTC is an objective 

function that allows an RNN to be trained for 

sequence transcription tasks without requiring any 

prior alignment between the input and target 

sequences. It uses a softmax output layer to define a 

separate output distribution P(k|t) at every step t 

over all possible label sequences, conditioned on a 

given input sequence. The output layer contains a 

single unit for each of the transcription labels 

(characters, phonemes, musical notes, etc.), plus an 

extra unit referred to as the ‘blank’ which 

corresponds to a null. Alignment of CTC π is 

defined by length T sequence of blank and label 

y y y y
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indices.  The probability P(π|x) is a product of the 

emission probabilities at every time step. 

𝑃(π|𝑥) =  ∏ 𝑃(π𝑡|𝑡, 𝑥)𝑇
𝑡=1   (9) 

For a given transcription sequence, there are as 

many possible alignments as there is different ways 

of separating the labels with blanks. Given this 

distribution, an objective function can be derived 

that directly maximizes the probabilities of the 

correct labeling. Since the objective function is 

differentiable, the network can then be trained with 

BPTT algorithm, where we try to minimize the CTC 

objective function: 

𝐶𝑇𝐶(𝒙) =  − log 𝑃(𝒚∗ |𝒙)  (10) 

where  𝒚∗ is target transcription. 

 

2.4 Wake-up Word Detection 
Voice command module continuously receives and 

process sound. The goal of Wake-up Word (WUW) 

detection module is reducing the additional number 

of cases in which ASR preforms Speech to Text 

(SST) operations at the same time minimizing 

unwanted triggers of Voice Command Interface 

(VCI).  Therefore, WUW spotting module can be 

viewed as a continuous identification process of the 

predefined wake-up word while rejecting all other 

words, sounds, and noises. 

In this work, we presented a context-aware keyword 

spotter which consists of unidirectional RNN (front-

end) and decoder (back-end) similar to the one in 

[13]. RNN is trained as end-to-end ASR with CTC 

to transcribe the input speech to a sequence of 

character labels. Given the purpose, keyword 

spotting compared to large vocabulary ASR requires 

simpler architecture suitable for real-time low-

power systems; hereof network consists of two 

unidirectional LSTM layers and a softmax output 

layer. At each frame, the soft output of the RNN is 

fed into back-end decoder for computing posterior 

probabilities of keywords. Decoder takes labels 

probabilities (characters, word-boundary and CTC 

blank) and converts them to character level output 

sequences.  

Word-boundary label is responsible for detecting 

keyword as a substring of other words, i.e., decoders 

network is bounded by the word-boundary label “_”. 

At each time frame decoder updates state by 

multiplying networks input probabilities with RNN 

labels probabilities. Nodes of the network contain 

either character label or word-boundary label 

followed by CTC blank. Decoder network 

probability is calculated as a sum of all incoming 

probabilities, and when negative log posterior 

probability is below a threshold, then the keyword is 

detected where the threshold is proportional to the 

number of characters in the keyword. 

 

2.5 Automatic Speech recognition 
When WUW component detects a predefined 

keyword, it triggers actual command recording, 

which is then processed by speech recognition 

component. In this work, we implemented end-to-

end ASR module aiming for offline speech 

recognition to protect users privacy. In the context 

of Voice command module, ASR needs to be 

lightweight and working with limited vocabulary 

since all command recording and processing should 

be done on low power embedded device. 

The architecture of ASR comprised of three 

components: Feature extraction part, Acoustic 

model (AM) responsible for describing distribution 

over acoustic observations for given the word 

sequence and the language model (LM) which 

assigns a probability to every possible word 

sequence.  

Underlying architecture for AM is Bidirectional 

Recurrent Neural Network with LSTM similar to 

one employed in [14]. Using bidirectional network 

allows the output layer to obtain information from 

past and future states i.e. information about the 

location of the characters before and after the 

current utterance can bring improvements in 

performance but introduces the increase in latency. 

This increase in latency is justified considering that 

role of the ASR in Voice Control module pipeline is 

speech-to-text transformation where the only 

accuracy is essential because transformed text 

command is further process by VCI and user doesn’t 

see actual output form ASR component (there isn’t 

feedback from ASR to the user). Each layer contains 

512 LSTM cells (256 neurons per forward and 

backward sub-layer)  

CTC algorithm was used to train sequence to 

sequence network with two bidirectional LSTM 

layers. The goal of CTC is to use neural network to 

transform input sequence into probabilities of 

characters at each time step, the speaker has spoken 

1 of 29 possible characters. 

ASR combines sequence score of acoustic model 

labels over a time frame and sequences score of 

words from language model and predicts actual 

speech command as word sequence that maximizes 

both the language and acoustic model scores. To 

speed up the training process of ASR in this work 

we used pretrained kalidi [15] LM to estimates the 

prior probabilities of spoken sounds. AM 

component is implemented in Tensorflow and for 
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learning parameters we used BPTT with 

AdamOptimizer which is an improved version of 

traditional gradient descent by using momentum 

(moving averages of the parameters) to control the 

learning rate. 

 

2.6 Voice Command Interface 
Voice command Interface receives results of the 

speech-to-text processing as unstructured text data. 

To create structured input which can be later used 

by HA to realize user commands, we used the 

command parser. Command parser accepts the 

unstructured command text and performs the 

semantic analysis according to predefined command 

patterns. Command parser was realized using parse 

generator ANTLR 4[16] and all possible command 

patterns are defined in ANTLR grammar file.  

Before determining command patterns, we need to 

identify between two types of smart home devices 

according to their use case: actuator where the user 

can set state, and the sensor which allows only to 

get the state. To design commands patterns to 

control or read the state of an individual device or a 

group of devices we define three parts: action, 

device name/device group and location descriptors 

(optional). 

 

 

3 Evaluation 
Experimental evaluation of the Voice Control 

module is made by analyzing each component 

separately. Before the start of the evaluation we 

asked 20 participants to read a text containing 400 

sentences of which 220 were home automation 

commands. Each command line is preceded by 

WUW keyword “Elise”. All the recordings are 

altered by corrupting clean utterances using room 

simulator, adding varying degrees of noise and 

reverberation from daily life noisy environmental 

recording so that overall SNR is between 0db and 

30db with average SNR of 12 db. This recorded data 

set is about 4 hours long and it will be used as our 

test set.  

In this work freely available recordings of 

transcribed English speech are used as the training 

set for both WUW and ASR components. Training 

corpus consists of 1000 hours of speech available as 

part of LibriSpeech dataset [17]. Inputs to RNN 

acoustic models are 40-dimensional MFCC features 

and their first and second-order derivates 

WUW component is further fine-tuned by adapting 

the WUW acoustical model to the speakers. Also, 

we used Speech Commands Dataset [18] containing 

65,000 one-second long utterances of 30 short 

words, by thousands of different people for the ASR 

model refinement training. 

Experimental results for WUW are given regarding 

false alarm per hour, i.e., false alarm frequency 

(FAF) which is defined as the incorrect detection of 

a keyword per hour. False Alarm (FA) rate is 

calculated by dividing the number of false positives 

by the total number of examples. False alarm means 

that the system is activated even though the user did 

not intend to do so. Reported FAF of the keyword 

spotter is 0,5. Evaluation results for ASR 

component are given in terms of word error rate 

(WER). Reported average WER of LibriSpeeech 

corpus is 21.5% and 32% when the recorded test set 

is used.  

The accuracy of Command Interface depends most 

on accuracy of speech to text transcription, and it 

can achieve 100% if the command follows grammar 

rules. 

 

 

4 Conclusion 
In this work, we presented the architecture of the 

voice command module that enabled voice control 

inside the smart home lab. The intent was to build a 

lightweight module that can run on low power 

embedded devices like Raspberry Pi. We presented 

the WUW spotting system that enables user to 

activate VCM using speech instead of manual 

activation. ASR was designed to allow offline 

speech to text processing regarding the matter of 

privacy. Unstructured text from ASR is parsed by 

Voice Command Interface and converted to 

appropriate JSON directive.   
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