
Voice command module for Smart Home Automation

LUKA KRALJEVIĆ, MLADEN RUSSO, MAJA STELLA

Laboratory for Smart Environment Technologies,

University of Split, FESB

Ruđera Boškovića 32, 21000, Split

CROATIA

lkraljev@fesb.hr

Abstract: - Voice control is the most prominent feature of smart home environment. In this paper, we proposed

a voice command module that enables users hands-free interaction with the smart home environment. We

presented three components required for simple and efficient control of the smart home devices. Wake up word

component allows actual voice command processing. Speech recognition component maps spoken voice

commands to text and Voice Control Interface parse that text into appropriate JSON format for home

automation. We evaluate the possibility of using the voice control module in a smart home environment by

separately analyzing each component of the module.

Key-Words: - Smart Home, Speech Recognition, Voice control, Wake-up Word, Commands Parsing

1 Introduction
Smart home environment represents an automation

system in which different sensors and intelligent

devices work together providing efficient service

functions to improve comfortable quality of house

living. The smart environment can be seen as a

promising way of supporting independent living

providing in-home assistance which is especially

significant to people with some disabilities [1].

Speech recognition is considered to be a bridge for

better and more natural human-computer interaction

[2]. Recent advances in automatic speech

recognition (ASR) made this technology one of the

essential features of the smart home automation

(HA) system [3][4]. Our goal is to enable voice

control within the smart home laboratory that can be

used to control a large number of devices such as

lights, plugs, sensors, dimmers, etc. In this paper,

we present the architecture of the voice control

module which has a role of converting the spoken

commands to text and then mapping them to the

appropriate actions in the HA system. Module

continuously listens and process the sounds from the

environment to ensures hands-free interaction. To

minimize the number of cases in which the action in

the HA system is triggered without actual user

intent, we introduced wake up word (WUW)

detection mechanism.

2 System Architecture
In this section, we described the architecture of the

proposed voice control module. The proposed

module consists of Wake-Up Word detection

module, Speech recognition engine and Voice

command interface as shown in Fig 1.

Figure 1 Voice Command Module

First, we will give a brief introduction inside deep

network architecture behind our WUW and ASR

components followed by the description of each

component.

2.1 Deep Network Architecture
Because of the ability to handle sequential

information almost all end-to-end speech

recognition systems use some recurrent neural

network in their pipeline [5]-[8]. In the RNN, the

internal representation of dynamic speech features is

formed by feeding the low-level acoustic features

into the hidden layer together with the recurrent

Wake up Word
Detection

Speech to Text
Engine

Voice Command
Interface

Command
 (Text)

Command
(Audio)

Voice
Command

Command
JSON

Luka Kraljevic et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 33 Volume 3, 2018

hidden features from the history. As an

improvement of conventional RNN, Bidirectional

Recurrent Neural Networks (BRNNs) can make use

of future context. Data is processed both directions

with two separate hidden layers by splitting the state

neurons of a regular RNN in a part that is

responsible for the positive time direction and part

for the negative time direction which are then fed

forwards to the same output layer as shown in Fig2.

Figure 2 Bidirectional LSTM

Outputs from forward states are not connected to

inputs of backward states, and vice versa [9]. Given

the input sequence x = (x1… xt) BRNN computes the

forward hidden sequence �⃗� , the backward hidden

sequence �⃖� and output sequence y=(y1…yt) with the

following iterative process:

 𝐡𝑡
⃗⃗⃗⃗⃗ = (𝐖𝑥ℎ⃗⃗⃗𝐱𝑡 + 𝐖ℎ⃗⃗⃗ℎ⃗⃗⃗ �⃗⃗⃗�𝑡−1 + 𝐛ℎ⃗⃗⃗) (1)

 𝐡𝑡
⃖⃗⃗⃗⃗ = (𝐖𝑥ℎ⃗⃗⃐𝐱𝑡 + 𝐖ℎ⃗⃗⃐ℎ⃗⃗⃐ �⃗⃗⃖�𝑡+1 + 𝐛ℎ⃗⃗⃐) (2)

 𝐲𝑡 = 𝐖ℎ⃗⃗⃗𝑦𝐡𝑡
⃗⃗⃗⃗⃗ + 𝐖ℎ⃗⃗⃖𝑦𝐡𝑡

⃖⃗⃗⃗⃗ + 𝐛𝑦 (3)

Learning RNN parameters 𝐖ℎ𝑦 , 𝐖𝑥ℎ and 𝐖ℎℎ goes

by using backpropagation through time (BPTT)

algorithm. For learning those weight matrices of an

RNN unfolds the network in time and propagates

error signals backwards through time. BPTT can be

viewed as extension of the classic backpropagation

algorithm for feed-forward networks, where the

stacked hidden layers for the same training frame t,

are replaced by the T same single hidden layers

across time t = 1,2,3,...,T. The use of the state space

in the RNN enables its representation and learning

of sequentially extended dependencies over

arbitrarily long sequences but in practice has been

shown that they are not capable of looking far back

into the past in many types of input sequences.

Generally, it is difficult to train RNN with

commonly used activation functions (tanh, sigmoid,

RELU) due to the exploding and vanishing gradient

[10]. One of the solutions is to embed the memory

structure like long-short-term memory cells (LSTM)

[11]. The structure of a single LSTM memory cell is

illustrated in Fig 3.

Figure 3 Architecture of simple LSTM

For LSTM, the computation at the time step t can be

formally written as follows:

𝒄𝑡 = 𝒇𝑡 • 𝒄𝑡−1 + 𝒊𝑡 • 𝑡𝑎𝑛ℎ(𝑾(𝑥𝑐)𝒙𝑡 + 𝑾(ℎ𝑐)𝒉𝑡−1 + 𝒃(𝑐)) (4)

𝒐𝑡 = 𝜎(𝑾(𝑥𝑜)𝒙𝑡 + 𝑾(ℎ𝑜)𝒉𝑡−1 + 𝑾(𝑐𝑜)𝒄𝑡 + 𝒃(𝑜)) (5)

𝒊𝑡 = 𝜎(𝑾(𝑥𝑖)𝒙𝑡 + 𝑾(ℎ𝑖)𝒉𝑡−1 + 𝑾(𝑐𝑖)𝒄𝑡−1 + 𝒃(𝑖)) (6)

𝒇𝑡 = 𝜎(𝑾(𝑥𝑓)𝒙𝑡 + 𝑾(ℎ𝑓)𝒉𝑡−1 + 𝑾(𝑐𝑓)𝒄𝑡−1 + 𝒃(𝑓)) (7)

𝒉𝑡 = 𝒐𝑡 • 𝑡𝑎𝑛ℎ (𝒄𝑡) (8)

Above formulas describe five different types of

information at time t representing the input gate,

forget gate, cell activation, output gate, and hidden

layer, where output 𝜎 is the logistic sigmoid

function, W is weight matrices connecting different

gates and b are the corresponding bias vectors.

2.2 Connectionist Temporal Classification
Connectionist Temporal Classification (CTC) [12]

is one of the most successful sequence-to-sequence

learning algorithms for RNNs. CTC is an objective

function that allows an RNN to be trained for

sequence transcription tasks without requiring any

prior alignment between the input and target

sequences. It uses a softmax output layer to define a

separate output distribution P(k|t) at every step t

over all possible label sequences, conditioned on a

given input sequence. The output layer contains a

single unit for each of the transcription labels

(characters, phonemes, musical notes, etc.), plus an

extra unit referred to as the ‘blank’ which

corresponds to a null. Alignment of CTC π is

defined by length T sequence of blank and label

y y y y

Luka Kraljevic et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 34 Volume 3, 2018

indices. The probability P(π|x) is a product of the

emission probabilities at every time step.

𝑃(π|𝑥) = ∏ 𝑃(π𝑡|𝑡, 𝑥)𝑇
𝑡=1 (9)

For a given transcription sequence, there are as

many possible alignments as there is different ways

of separating the labels with blanks. Given this

distribution, an objective function can be derived

that directly maximizes the probabilities of the

correct labeling. Since the objective function is

differentiable, the network can then be trained with

BPTT algorithm, where we try to minimize the CTC

objective function:

𝐶𝑇𝐶(𝒙) = − log 𝑃(𝒚∗ |𝒙) (10)

where 𝒚∗ is target transcription.

2.4 Wake-up Word Detection
Voice command module continuously receives and

process sound. The goal of Wake-up Word (WUW)

detection module is reducing the additional number

of cases in which ASR preforms Speech to Text

(SST) operations at the same time minimizing

unwanted triggers of Voice Command Interface

(VCI). Therefore, WUW spotting module can be

viewed as a continuous identification process of the

predefined wake-up word while rejecting all other

words, sounds, and noises.

In this work, we presented a context-aware keyword

spotter which consists of unidirectional RNN (front-

end) and decoder (back-end) similar to the one in

[13]. RNN is trained as end-to-end ASR with CTC

to transcribe the input speech to a sequence of

character labels. Given the purpose, keyword

spotting compared to large vocabulary ASR requires

simpler architecture suitable for real-time low-

power systems; hereof network consists of two

unidirectional LSTM layers and a softmax output

layer. At each frame, the soft output of the RNN is

fed into back-end decoder for computing posterior

probabilities of keywords. Decoder takes labels

probabilities (characters, word-boundary and CTC

blank) and converts them to character level output

sequences.

Word-boundary label is responsible for detecting

keyword as a substring of other words, i.e., decoders

network is bounded by the word-boundary label “_”.

At each time frame decoder updates state by

multiplying networks input probabilities with RNN

labels probabilities. Nodes of the network contain

either character label or word-boundary label

followed by CTC blank. Decoder network

probability is calculated as a sum of all incoming

probabilities, and when negative log posterior

probability is below a threshold, then the keyword is

detected where the threshold is proportional to the

number of characters in the keyword.

2.5 Automatic Speech recognition
When WUW component detects a predefined

keyword, it triggers actual command recording,

which is then processed by speech recognition

component. In this work, we implemented end-to-

end ASR module aiming for offline speech

recognition to protect users privacy. In the context

of Voice command module, ASR needs to be

lightweight and working with limited vocabulary

since all command recording and processing should

be done on low power embedded device.

The architecture of ASR comprised of three

components: Feature extraction part, Acoustic

model (AM) responsible for describing distribution

over acoustic observations for given the word

sequence and the language model (LM) which

assigns a probability to every possible word

sequence.

Underlying architecture for AM is Bidirectional

Recurrent Neural Network with LSTM similar to

one employed in [14]. Using bidirectional network

allows the output layer to obtain information from

past and future states i.e. information about the

location of the characters before and after the

current utterance can bring improvements in

performance but introduces the increase in latency.

This increase in latency is justified considering that

role of the ASR in Voice Control module pipeline is

speech-to-text transformation where the only

accuracy is essential because transformed text

command is further process by VCI and user doesn’t

see actual output form ASR component (there isn’t

feedback from ASR to the user). Each layer contains

512 LSTM cells (256 neurons per forward and

backward sub-layer)

CTC algorithm was used to train sequence to

sequence network with two bidirectional LSTM

layers. The goal of CTC is to use neural network to

transform input sequence into probabilities of

characters at each time step, the speaker has spoken

1 of 29 possible characters.

ASR combines sequence score of acoustic model

labels over a time frame and sequences score of

words from language model and predicts actual

speech command as word sequence that maximizes

both the language and acoustic model scores. To

speed up the training process of ASR in this work

we used pretrained kalidi [15] LM to estimates the

prior probabilities of spoken sounds. AM

component is implemented in Tensorflow and for

Luka Kraljevic et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 35 Volume 3, 2018

learning parameters we used BPTT with

AdamOptimizer which is an improved version of

traditional gradient descent by using momentum

(moving averages of the parameters) to control the

learning rate.

2.6 Voice Command Interface
Voice command Interface receives results of the

speech-to-text processing as unstructured text data.

To create structured input which can be later used

by HA to realize user commands, we used the

command parser. Command parser accepts the

unstructured command text and performs the

semantic analysis according to predefined command

patterns. Command parser was realized using parse

generator ANTLR 4[16] and all possible command

patterns are defined in ANTLR grammar file.

Before determining command patterns, we need to

identify between two types of smart home devices

according to their use case: actuator where the user

can set state, and the sensor which allows only to

get the state. To design commands patterns to

control or read the state of an individual device or a

group of devices we define three parts: action,

device name/device group and location descriptors

(optional).

3 Evaluation
Experimental evaluation of the Voice Control

module is made by analyzing each component

separately. Before the start of the evaluation we

asked 20 participants to read a text containing 400

sentences of which 220 were home automation

commands. Each command line is preceded by

WUW keyword “Elise”. All the recordings are

altered by corrupting clean utterances using room

simulator, adding varying degrees of noise and

reverberation from daily life noisy environmental

recording so that overall SNR is between 0db and

30db with average SNR of 12 db. This recorded data

set is about 4 hours long and it will be used as our

test set.

In this work freely available recordings of

transcribed English speech are used as the training

set for both WUW and ASR components. Training

corpus consists of 1000 hours of speech available as

part of LibriSpeech dataset [17]. Inputs to RNN

acoustic models are 40-dimensional MFCC features

and their first and second-order derivates

WUW component is further fine-tuned by adapting

the WUW acoustical model to the speakers. Also,

we used Speech Commands Dataset [18] containing

65,000 one-second long utterances of 30 short

words, by thousands of different people for the ASR

model refinement training.

Experimental results for WUW are given regarding

false alarm per hour, i.e., false alarm frequency

(FAF) which is defined as the incorrect detection of

a keyword per hour. False Alarm (FA) rate is

calculated by dividing the number of false positives

by the total number of examples. False alarm means

that the system is activated even though the user did

not intend to do so. Reported FAF of the keyword

spotter is 0,5. Evaluation results for ASR

component are given in terms of word error rate

(WER). Reported average WER of LibriSpeeech

corpus is 21.5% and 32% when the recorded test set

is used.

The accuracy of Command Interface depends most

on accuracy of speech to text transcription, and it

can achieve 100% if the command follows grammar

rules.

4 Conclusion
In this work, we presented the architecture of the

voice command module that enabled voice control

inside the smart home lab. The intent was to build a

lightweight module that can run on low power

embedded devices like Raspberry Pi. We presented

the WUW spotting system that enables user to

activate VCM using speech instead of manual

activation. ASR was designed to allow offline

speech to text processing regarding the matter of

privacy. Unstructured text from ASR is parsed by

Voice Command Interface and converted to

appropriate JSON directive.

Acknowledgment
This work has been fully supported by the Croatian

Science Foundation under the project number UIP-

2014-09-3875.

References:

[1] De Silva, L.C., Morikawa, C. and Petra, I.M.,

2012. State of the art of smart homes.

Engineering Applications of Artificial

Intelligence, 25(7), pp.1313-1321.

[2] Picone, J., 1996. Fundamentals of speech

recognition: A short course. Institute for Signal

and Information Processing, Mississippi State

University.

[3] Giannakopoulos, T., Tatlas, N.A., Ganchev, T.

and Potamitis, I., 2005. A practical, real-time

speech-driven home automation front-end.

Luka Kraljevic et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 36 Volume 3, 2018

IEEE Transactions on Consumer Electronics,

51(2), pp.514-523.

[4] McLoughlin, I.V. and Sharifzadeh, H.R., 2007,

December. Speech recognition engine

adaptions for smart home dialogues. In

Information, Communications & Signal

Processing, 2007 6th International Conference

on (pp. 1-5). IEEE.

[5] Graves, A., Mohamed, A.R. and Hinton, G.,

2013, May. Speech recognition with deep

recurrent neural networks. In Acoustics, speech

and signal processing (icassp), 2013 ieee

international conference on (pp. 6645-6649).

IEEE.

[6] Graves, A., 2012. Sequence transduction with

recurrent neural networks. arXiv preprint

arXiv:1211.3711.

[7] Vinyals, O., Ravuri, S.V. and Povey, D., 2012,

March. Revisiting recurrent neural networks for

robust ASR. In Acoustics, Speech and Signal

Processing (ICASSP), 2012 IEEE International

Conference on (pp. 4085-4088). IEEE.

[8] Li, J., Zhang, H., Cai, X. and Xu, B., 2015.

Towards end-to-end speech recognition for

chinese mandarin using long short-term

memory recurrent neural networks. In

Sixteenth annual conference of the international

speech communication association.

[9] Schuster, M. and Paliwal, K.K., 1997.

Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11),

pp.2673-2681.

[10] Graves, A., 2013. Generating sequences with

recurrent neural networks. arXiv preprint

arXiv:1308.0850.

[11] Hochreiter, S. and Schmidhuber, J., 1997. Long

short-term memory. Neural computation, 9(8),

pp.1735-1780.

[12] Graves, A., Fernández, S., Gomez, F. and

Schmidhuber, J., 2006, June. Connectionist

temporal classification: labelling unsegmented

sequence data with recurrent neural networks.

In Proceedings of the 23rd international

conference on Machine learning (pp. 369-376).

ACM.

[13] Hwang, K., Lee, M. and Sung, W., 2015.

Online keyword spotting with a character-level

recurrent neural network. arXiv preprint

arXiv:1512.08903.

[14] Graves, A. and Jaitly, N., 2014, January.

Towards end-to-end speech recognition with

recurrent neural networks. In International

Conference on Machine Learning (pp. 1764-

1772).

[15] Povey, D., Ghoshal, A., Boulianne, G., Burget,

L., Glembek, O., Goel, N., Hannemann, M.,

Motlicek, P., Qian, Y., Schwarz, P. and

Silovsky, J., 2011. The Kaldi speech

recognition toolkit. In IEEE 2011 workshop on

automatic speech recognition and

understanding (No. EPFL-CONF-192584).

IEEE Signal Processing Society.

[16] Parr, T., 2013. The definitive ANTLR 4

reference. Pragmatic Bookshelf.

[17] Panayotov, V., Chen, G., Povey, D. and

Khudanpur, S., 2015, April. Librispeech: an

ASR corpus based on public domain audio

books. In Acoustics, Speech and Signal

Processing (ICASSP), 2015 IEEE International

Conference on (pp. 5206-5210). IEEE.

[18] Warden, P., 2018. Speech Commands: A

Dataset for Limited-Vocabulary Speech

Recognition. arXiv preprint arXiv:1804.03209.

Luka Kraljevic et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 37 Volume 3, 2018

