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Abstract: Introduced by Priestley, evolutionary spectral theory generalizes the definition of spectrum for nonsta-
tionary signals while avoiding some of the shortcomings of bilinear time-frequency distributions. There have been
different approaches to estimate Priesley’s evolutionary spectrum such as evolutionary periodogram. In this paper,
we present an estimator of evolutionary spectrum for blind separation of nonstationary signals. Our estimator uses
a transform based on discrete prolate spheroidal sequences. Also known as Slepian sequences, DPSS are defined
to be sequences with maximum spectral concentration for a given duration and bandwidth. Using the connection
between discrete evolutionary transform and evolutionary periodogram, we derive the estimator for the evolution-
ary spectrum and demonstrate its performance for blind source separation of time-varying autoregressive moving
average signals.
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1 Introduction
Most signals show some form of nonstationarity
which can be described by time-dependent spectra
[1]. Introduced by Priestley, evolutionary spectral the-
ory generalizes the definition of spectrum for non-
stationary signals while avoiding some of the short-
comings of bilinear time-frequency distributions such
as cross-terms [2]. Processes composed of slowly
varying amplitude modulated carriers, also called os-
cillatory processes, are considered to have an evolu-
tionary spectrum [2]. There have been different ap-
proaches to estimate evolutionary spectrum (ES). For
example, evolutionary periodogram (EP) [3, 4] can be
used to estimate the ES by allowing nonstationary sig-
nals to be modeled as a sum of complex sinusoids
with time-varying complex amplitudes [4]. In [5], the
discrete evolutionary transform (DET) was proposed
for the computation of a kernel and the correspond-
ing ES. Similarly, in array signal processing, the sig-
nal received by each sensor of the array can be mod-
eled as a sum of complex sinusoids with time-varying
complex amplitudes [6]. As shown in [6], the time-
varying amplitudes can be estimated using linear esti-
mators obtained via minimum mean-squared error cri-
teria. These estimates are then used for the estimation
of time-varying cross-power distributions of the data
across the array.

Spectral definition of nonstationary signals can
be used in the Blind Source Separation (BSS) prob-

lem [7], as well. The BSS consists of several sig-
nals emitted from point sources placed in the far field
and involve several sensors. In the simplest form, it
can be defined as recovering n unknown sources from
m observations (mixtures) of them [8]. In general,
each sensor receives a linear mixture of source sig-
nals and BSS methods recover all individual sources
from the mixture or at least separate a particular
source. The BSS algorithms can be classified as the
ones that are based on using statistical information
available on source signals or those that are exploit-
ing the difference in the time-frequency signatures of
the sources to be separated [9, 10, 11]. An exam-
ple for the over-deteminded case i.e., the number of
observations are greater than the number of sources
n ≤ m, a method based on second-order statistics and
joint-diagonalization of set of covariance matrices can
be found in [12]. Other examples on spatial time-
frequency distributions (TFDs) as a generalization of
bilinear TFDs, in the case of nonstationary signals, are
in [13, 14]. Although bilinear TFDs have good local-
ization property, they display cross-terms and positiv-
ity of spectral estimates are not guaranteed [15].

The EP as an estimator of the Wold-Cramer ES,
which is a special case of Priestley’s ES, was used
also for array processing in semi-homogeneous ran-
dom fields [16]. In this paper, by expanding our work
[17] on reconstruction of signals from nonuniform
samples in the evolutionary spectral domain, we in-
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troduce a spectrum estimator for BSS problem. We
will use the spatial evolutionary spectrum estimated
by a transform based on discrete prolate spheroidal
sequences (DPSS) [18] together with whitening tech-
nique to estimate the mixing matrix. Once the mix-
ing matrix is estimated, we can separate the source
signals. Also known as Slepian sequences, DPSS de-
rive from the time-frequency concentration problem
and are defined to be sequences with maximum spec-
tral concentration for a given duration and bandwidth.
The paper is organized as follows. In the next sec-
tion, we review the evolutionary spectral theory and
provide the fundamental equations of signal represen-
tation. In Section 3, we present the proposed estima-
tor. We briefly review the BSS problem and related
formulation in Section 4. In Section 5, we present ex-
perimental results. Conclusions follow.

2 Estimation of Evolutionary Spec-
trum

The evolutionary spectral theory describes the local
power frequency distribution at each instant of time
[2]. As a special case of Priestley’s evolutionary spec-
trum (ES), the Wold-Cramér ES considers a nonsta-
tionary signal as the output of a linear time-varying
system driven by a stationary white noise [20]. The
evolutionary periodogram (EP) was presented for es-
timation of the Wold-Cramér ES [4].

In the following, we will review the Wold-Cramér
ES starting with the representation of a discrete-time
nonstationary process as the output of a casual, linear
time-varying system with impulse response h[n,m] as

x[n] =
n∑

m=−∞
h[n,m]ε[m], (1)

here discrete-time nonstationary process x[n] is the
output for the input {ε[m]}which is a stationary, zero-
mean, unit-variance, white noise process. The repre-
sentation in (1) is known as the Wold-Cramér decom-
position [19]. The white noise process, {ε[m]} can be
expressed as a sum of sinusoids with random ampli-
tudes and phases as follows

ε[m] =

π∫
−π

ejωmdZ(ω). (2)

Accordingly, the nonstationary process {x[n]} can be
expressed as

x[n] =

π∫
−π

H(n, ω)ejωndZ(ω), (3)

where

H(n, ω) =
n∑

m=−∞
h[n,m]e−jω(n−m), (4)

for Z(ω) being a process with orthogonal increments.
The variance of x[n]

E{|x[n]|2} =
1

2π

π∫
−π

|H(n, ω)|2dω, (5)

provides the power distribution of the nonstationary
process {x[n]} at each time n, as a function of the
frequency parameter ω.

The Wold-Cramér ES is defined as S(n, ω) =
|H(n, ω)|2 and the cross-power ES for two pro-
cesses {x[n]} and {y[n]} is given as Sxy(n, ω) =
Hx(n, ω)H∗y (n, ω). This definition was also proposed
in [20] as a special case of Priestley’s ES if one re-
stricts the function H(n,w) to the class of oscillatory
functions that are slowly-varying in time. In [4], a
similar condition was applied to model the component
of x[n] for a particular frequency of interest, ω0 as

x0[n] = H(n, ω0)ejωndZ(ω0), (6)

such that

x[n] = x0[n]+yω0 [n] = A(n, ω0)ejωn+yω0 [n], (7)

where A(n, ω0) represents time-varying complex am-
plitude as A(n, ω0) = H(n, ω0)dZ(ω0) and yω0 [n]
being a zero-mean modeling error.

It can be derived that

E{|A(n, ω0)|2} = S(n, ω0)
dω0

2π
, (8)

and using x[n] and A(n, ω0), we can estimate
S(n, ω0). Repeating this process for all frequencies
ω, an estimate of the time-dependent spectral density
S(n, ω) was obtained [4].

If we assume that A(n, ω0) also varies with time,
a representation as an expansion of orthonormal func-
tions {βi[n]} over 0 ≤ n ≤ N − 1 is

A(n, ω0) =

M(ω0)−1∑
i=0

β∗i ai = b[n]Ha. (9)

The vectors a = [a0, ..., aM−1]T and b[n] =
[β0[n], ..., βM−1[n]]T represent a vector of random
expansion coefficients and a vector of orthonormal
functions at time n, respectively. The number of ex-
pansion functions M ≤ N depends on the frequency
ω0 and indicates the degree to which A(n, ω0) varies
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with time. For small M, A(n, ω0) is slowly varying
and for large values of M , A(n, ω0) is rapidly vary-
ing. Then, any time behavior of A(n, ω0) can be ap-
proximated by changing M . However, the order of
expansion must be kept at a minimum to improve fre-
quency resolution [4]. The minimum mean squared
error (MSE) estimate for A(n, ω0) is

Â(n, ω0) =
M−1∑
i=0

β∗i [n]
N−1∑
k=0

βi[k]x[k]e−jω0k, (10)

and for all possible values of frequency, the time-
varying spectral density is called the EP [4]. There-
fore, the relation between the estimator and the time-
varying spectral density can be found as

Ŝ =
2π

dω
|Â(n, ω)|2 (11)

=
N

M
|
M−1∑
i=0

β∗i [n]
N−1∑
k=0

βi[k]x[k]e−jωk|2.

Rewriting (11)

Ŝ =
N

M
|
N−1∑
k=0

v[n, k]x[k]e−jωk|2, (12)

here Ŝ can be interpreted as the magnitude square of
the Fourier transform of x[k] windowed by a sequence
v[n, k] where v[n, k] =

∑M−1
i=0 β∗i [n]βi[k]. Using the

model in (7) at frequency ω0, the derivations above
can be expanded for array processing as in [6]. For ex-
ample, considering signals {xl[n]}, 1 ≤ l ≤ L, 0 ≤
n ≤ N − 1, where L is the number of sensors and N
is the number of the data snapshots, {Al(n, ωo)} can
be represented as an expansion of M orthogonal basis
functions for the sensor data xl[n] as

Al(n, ωo) =

M(ω0)−1∑
i=0

β∗i ai, (13)

and xl[n] can be expressed over the observation inter-
val in vector form

xl = F(ω0)al(ω0) + yl(ω0), (14)

where F(ω0) is a matrix with entries Fn+1,i+1 =
β∗i [n]ejω0n, [6]. Letting a[n] = b[n]HA be a
vector of amplitudes at time n, the estimates of
the time-varying amplitudes are obtained as â[n] =
b[n]HFHx via MSE estimator. Then, in array sig-
nal processing, the cross-power evolutionary spectral
density estimator is

Ŝxx(n, ω) = E{â[n]H â[n]}, (15)

which is also

Ŝxx(n, ω) = (b[n]HFH)⊗l R⊗r (Fb[n]), (16)

here ⊗l and ⊗r are the left and right block Kronecker
product, respectively and R = E{xxH} with E be-
ing the expectation operator. The cross-power be-
tween the data at sensors ` and m can be obtained as
Ŝx`xm(n, ω) [6].

3 Derivation of Slepian Estimator
for Evolutionary Spectrum

3.1 From Evolutionary Periodogram to Dis-
crete Evolutionary Transform

In this section we will briefly review the discrete evo-
lutionary transform. In [5], the discrete evolutionary
transform (DET) was defined to represent a nonsta-
tionary signal and its spectrum. Using Gabor or Mal-
var representations with the Wold-Cramér representa-
tion, an evolutionary kernel can be obtained and the
ES is the magnitude square of the evolutionary kernel
[5]. The Wold-Cramér representation, similar to (1)
can be written as

x[n] =
K−1∑
k=0

X(n, ωk)e
jωkn, (17)

where ωk = 2πk/K, 0 ≤ n ≤ N − 1 and X(n, ωk)
is called the evolutionary kernel [5]. In this case asso-
ciating with the sinusoidal representation in (1)

X(n, ωk) =
N−1∑
`=0

x(`)Wk(n, `)e
−jωk`, (18)

is an inverse discrete transformation that provides the
evolutionary kernel, X(n, ωk) in terms of the sig-
nal. Wk(n, `) is in general, a time and frequency
dependent window [5]. Here the ES is defined as
SE(n, ωk) = |X(n, ωk)|2. It becomes obvious
that the DET is a generalization of the STFT and
SE(n, ωk) is a generalization of the spectrogram. A
similar representation for the kernel was obtained in
[4] when developing the EP by expressing the time-
varying window as a set of orthogonal functions.

3.2 From Evolutionary Transform to Slepian
Evolutionary Periodogram

Stationary and nonstationary random processes can
be represented by general orthogonal expansions as
proposed by Priestley [19]. Discrete form of prolate
spheroidal wave functions (PSWF) [18] can be used
efficiently for signal representation [17] and called
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discrete prolate spheroidal sequences (DPSS). These
sequences are also known as Slepian sequences. In
general, a signal x[n] can be represented in terms of
an orthogonal basis {φk[n]} as,

x[n] =
K−1∑
k=0

dkφk[n], 0 ≤ n ≤ N − 1, (19)

dk =
N−1∑
n=0

x[n]φ∗k[n], 0 ≤ k ≤ K − 1.

We showed in [17] that x[n]can be written as follows:

x[n] =
K−1∑
k=0

[
dkφk[n]e−jωkn

]
︸ ︷︷ ︸

X(n,ωk)

ejωkn, (20)

where ωk = 2π k
N . We can obtain the evolutionary

kernel X(n, ωk) in terms of x[n] by replacing the dk
coefficients with their definition in (19)

X(n, ωk) = dkφk[n]e−jωkn (21)

=
N−1∑
m=0

x[m]Wk(n,m)e−jωkm,

where Wk(n,m) = φk[n]φ∗k[m]e−jωk(n−m). In order
to obtain the evolutionary kernel, specifically the win-
dow Wk(n,m), we considered DPSS {φk[n]} as the
bases of the representation in [17]. Accordingly, by
taking the magnitude square as |X(n, ωk)|2, we ob-
tain the ES.

3.3 Evolutionary Slepian Estimator
The use of PSWF as data tapers for analysis of non-
stationary and nonlinear time series is not new [21].
Indeed, PSWF have also been used in many other ap-
plications, one example is in communication theory
[22] and their mathematical properties and computa-
tion are presented in [23]. Discrete form of the PSWF
i.e., DPSS resulted from the work of Slepian about
the problem of concentrating a signal jointly in tem-
poral and spectral domains [18]. Given N and 0 <
Ω < 1/2, the DPSS are a collection of N real valued,
strictly bandlimited |f | ≤ Ω discrete time sequences
φN,Ω =

[
φ

(1)
N,Ω, φ

(2)
N,Ω, · · · , φ

(N)
N,Ω

]
with their corre-

sponding eigenvalues 1 > λ
(1)
N,Ω > λ

(2)
N,Ω · · ·λ

(N)
N,Ω >

0. The second Slepian sequence is orthogonal to the
first Slepian sequence. The third Slepian sequence
is orthogonal to both the first and second Slepian
sequences. Continuing in this way, the Slepian se-
quences form an orthogonal set of bandlimited se-
quences.

There are 2NΩ − 1 Slepian sequences with en-
ergy concentration ratios approximately equal to one
and for the rest, the concentration ratios begin to ap-
proach zero, (See Fig.1). For a given integer K ≤ N ,
we can getN×K matrix formed by taking the firstK
columns of φN,Ω. WhenK ≈ 2NΩ, it is a highly effi-
cient basis that captures most of the signal energy. The
details on how well signals can be represented using
the DPSS can be found in [23, 22]. In the following,
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Figure 1: Left: First four Slepian sequences for cho-
sen N=512 and NΩ=3.5; right: energy concentrations
i.e., eigenvalues.

we derive an estimator for ES using Slepian sequences
for solution of blind source separation (BSS) problem
in the spectral domain. Let us start with the basic def-
inition of DET and apply windowing as follows:

x[n] =
M−1∑
m=0

K−1∑
k=0

dm,kφk[n]h(n−mL), (22)

if we modify (22) by multiplying with both e−jωkn

and ejωkn (i.e., no effect introduced as e−jωknejωkn =
1), we obtain the transform from which we compute
the evolutionary kernel X(n, ωk) as

x[n] =
K−1∑
k=0

[M−1∑
m=0

dm,kφk[n]h(n−mL)e−jωkn
]

︸ ︷︷ ︸
X(n,ωk)

ejωkn.

The coefficients dm,k can be calculated as follows

dm,k =
N−1∑
`=0

x[`]φ∗k[`]γ
∗(`−mL). (23)

Rewriting X(n, ωk) by replacing dm,k with (23), we
obtain

X(n, ωk) =
N−1∑
`=0

M−1∑
m=0

x(`)φ∗k[`]φk[n]ϕ[n, `]e−jωkn,

(24)
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whereϕ[n, `] = h(n−mL)γ∗(`−mL) for h(n−mL)
and γ∗(`−mL) being Gaussian functions. Arranging
the terms by multiplying with e−jωk` and ejωk` again
and rearranging

X(n, ωk) =
N−1∑
`=0

x(`)W (n, `)e−jωk`, (25)

gives us an expression similar to STFT for the evolu-
tionary kernel X(n, ωk) and also the time-frequency
dependent window W (n, `) where

W (n, `) =
M−1∑
m=0

φ∗k[`]ϕ[n, `]ejωk`φk[n]e−jωkn. (26)

Accordingly, we can obtain the proposed spectrum
which we call the windowed evolutionary Slepian
spectrum (WESS) by taking the magnitude square as
S = |X(n, ωk)|2 and illustrate in the simulations.
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Figure 2: TVARMA sources and their corresponding
windowed evolutionary Slepian spectra.
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Figure 3: TVARMA sources and their corresponding
SPWV spectra.

We will compare the Smoothed Pseudo Wigner-
Ville (SPWV) distribution (for reduction of cross
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Figure 4: Separation of sources from noiseless ob-
servations and comparison with actual sources using
windowed evolutionary Slepian transform.
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Figure 5: Separation of sources from noiseless ob-
servations and comparison with actual sources using
SPWV distributions.

terms) [15] to the WESS in our experiments for the
BSS problem, as we present in Section 5.
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Figure 6: Separation of sources from noisy obser-
vations (SNR 20 dB) and comparison with actual
sources using windowed evolutionary Slepian trans-
form.
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Figure 7: Separation of sources from noisy obser-
vations (SNR 20 dB) and comparison with actual
sources using SPWV distributions.

4 Blind Source Separation Problem
4.1 Problem Formulation
Blind source separation (BSS) covers a wide range of
applications in diverse fields such as digital communi-
cations, pattern recognition, biomedical engineering,
and financial data analysis, among others. Separation
of unknown signals that have been mixed in an un-
known way has been a topic of great interest in the
signal processing community, as well. In general, the
available BSS methods use the following data model
for each signal received at each sensor [12]:

x[n] = Cs[n] + µ[n], (27)

such that

• x[n] = [x1[n], . . . , xp[n]]T is a p vector of ob-
servations,

• s[n] = [s1[n], . . . , sq[n]]T is a q vector of un-
known sources,

• C is a p× q mixing or array matrix,

• µ[n] is a zero-mean, σ2 variance white noise vec-
tor.

The objective is to obtain an estimate Ĉ of C and ob-
tain sources as

ŝ[n] = Ĉx[n] ≈ Gs[n] + Ĉ#µ[n] (28)

where # represents pseudoinverse and G is a ma-
trix with only one nonzero entry per row and col-
umn [12]. In particular, the approaches using time-
frequency signal representations for BSS involve the
following steps [25]:

• Estimation of the spatial time-frequency spectra,

• Estimation of whitening matrix and noise vari-
ance,

• Joint-diagonalization of the noise compensated
and whitened spatial time-frequency spectra ma-
trices.

The details of these steps and full implementation of
BSS can be found in [13, 25, 26].

4.2 Spatial Evolutionary Transform and BSS
In time-frequency approach for BSS, using the data
model received at each sensor, the cross-power spec-
tral estimate can be written as [6],

Ŝxx(n, ω) = CŜss(n, ω)CH +σ2b[n]Hb[n]I. (29)

In this paper, in the equation above, Ŝxx(n, ω) is the
evolutionary spatial Slepian estimate as (16). Repre-
senting W as the p × q whitening matrix and letting
U = WC, whitened and noise compensated matrices
are

S̃xx(n, ω) = W(Ŝxx(n, ω)− σ2I)WH (30)

= UŜss(n, ω)UH

where U is unitary and diagonalizes the cross-power
spectral estimate S̃xx(n, ω) for any (n, ω) [24, 25,
26]. The unitary matrix can be estimated from the
eigenvectors of any S̃xx(n, ω) with distinct eigenval-
ues and the mixing matrix is obtained using C =
W#U. The source signals are then estimated as in
(28) [25].

5 Experimental Results
In our experiments, we test the applicability of Slepian
transform as a valid spectrum estimator of nonstation-
ary signals for BSS problem in particular for a time
varying autoregressive moving average (TVARMA)
process. Using the time-frequency representation
based BSS algorithm in [25], for simulation of an
overdetermined case, we use three sources and four
observations. The observations are considered as
noise free and noisy (20 dB SNR). We compare our
method with the smoothed pseudo Wigner Ville Spec-
trum (SPWVS) of the sources (See Fig. 2 and Fig.
3). SPWV representation was preferred for increased
readability (i.e., for the reduction in the number of
cross-terms that happen in the Wigner Ville spectrum)
[15]. The separation of three sources and estima-
tion from noise free observations using the proposed
method is presented in Fig. 4 and estimation using
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the SPWV representation is presented in Fig. 5 with
the same BSS algorithm given in [25]. As we see
from these figures, the results are very similar; how-
ever SPWV representation showing slightly more pre-
cise estimation performance. Then we test the esti-
mation of sources using noisy observations for SNR
20 dB. Again, the results are very similar for the pro-
posed method and the SPWV representation, with the
SPWV representation showing slightly more precise
estimation (See Fig. 6 and Fig. 7).

6 Conclusion
In this paper, we defined a spectral estimation method
using Slepian sequences similar to the evolutionary
periodogram and showed that Slepian transform can
be used for blind source separation problem for non-
stationary signals. The proposed method perform sim-
ilar to the smoothed pseudo Wigner Ville represen-
tation for noiseless and noisy cases (SNR 20 dB).
We will consider robust blind source separation algo-
rithms for performance improvement of noisy obser-
vations as our future work. Additionally, we will ana-
lyze a wide variety of processes with increased num-
ber of sources and observations for more detailed ob-
servations of nonstationary processes in BSS problem.
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