
Color and Depth Image Based 3D Object Model Generation

YANG-KEUN AHN, KWANG-SOON CHOI, YOUNG-CHOONG PARK
Korea Electronics Technology Institute

121-835, 8th Floor, #1599, Sangam-Dong, Mapo-Gu, Seoul
REPUBLIC OF KOREA

ykahn@keti.re.kr

Abstract: - This study examines methods for creating a perfect 3D model by obtaining the values of R, G and B
from color/depth map images, conducting a point-based 3D modeling in OpenGL for objects and images, and
filling the holes created on the front or flank sides based on depth values. The most important part in this
process is to fill the front and side holes by employing a differentiated hole-filling method. 3D models allow
users to watch images drawn from the left and right sides of a 3D television by means of a pair of 3D glasses,
and this study explores how an OptiTrack camera can search for users and then show them objects and images
that fit the users’viewpoint from their own location.

Key-Words: - 3D Object Model, 3D Model-FHD, 3D Model, Lenticular, Hole Filling, Glasses-free 3D Model

1 Introduction
This study aimed to go beyond the existing 3D
modeling system which tracks the location of users
and creates real-time multi-view images based on
such location information, and to focus instead on
creating a practical 3D model in real-time.

The prior system for our third-year project
employed the depth-image-based rendering (DIBR)
method to produce a variety of multi-view images in
real time that suited the location of users. We
created multi-view images by rendering the texture
images, in order to produce a virtual viewpoint for
different user locations based on the RGB texture
images and depth images. By tracking user locations,
we could warp the multi-view images in real time to
produce images based on virtual viewpoints for
different locations. This results in lively 3D effects
by presenting the warp images as if they moved
according to each user’s movement, thereby
creating more active contents.

That technology, however, did not make users
actually feel they were watching a 3D model. Users
merely have an impression that 2D images are
moving with them, because 2D images are used
instead of real 3D models. Against this backdrop,
this fourth-year development focused on utilizing
depth map images and color images in the OpenGL
windows as a means to create 3D models and
provide them in real time to users to correspond to
their varied viewpoints, eventually delivering a
more lively experience of 3D models.

Fig. 1 Algorithm for 3D model creation

Such technology also aimed at maintaining the

quality of the existing images to the maximum
possible extent, the details of which will be
explained in the next chapter. The issues discussed
in the next chapter are: (1) Camera calibration
technology based on point correspondences; (2)
Preprocessing of depth maps; (3) Color image-based
texture creation technology; (4) Color/depth image-
based mesh creation technology; (5) Multi-view
color/depth image matching technology; and (6)
Glasses-free 3D model creation by using lenticular
images and synthesizing eight viewpoints. These
issues will be further examined in the following
chapters with experiments and conclusion. The
references used for this study are provided in the
last chapter.

Yang-Keun Ahn et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 28 Volume 2, 2017

2 Discussion

2.1 Camera Calibration Technology Based
on Point Correspondences
The first step involves matching the ratio and
location of color images and depth map images. We
conducted calibration based not on depth map
images, but based on color images, because
calibrating the size of color images based on depth
map images is likely to mar the resolution of color
images and therefore lower the resolution of the
final outcome. Merely resizing the images often
produces holes due to unmatched sizes, and so
bicubic interpolation was used in order to address
the issue.

This interpolation involves a cubic polynomial,
in which we presume that we know about two points
and the slope of the tangent at those two points. A
double polynomial often produces an unnatural
curve or does not draw a curve at all, but a cubic
polynomial makes a highly natural curve that
smoothly links each section. For bicubic
interpolation, if the original image’s coordinates for
each pixel of the target image have real numbers
when the original image is expanded, the 16 pixel
values surrounding the relevant pixel are used for
interpolation.

Fig. 2 Color/depth 3D modeling method

2.2 Preprocessing of Depth Maps

Since we expanded the depth maps based on the
color images, the holes already lost and nonblocking
parts grew larger. To address this issue, we used the
median filter to eliminate the holes seen from the
front side of the object.

Fig. 3 Median filter

2.3 Color Image-based Texture Creation
Technology
We obtained the depth values from depth maps
based on the color images, and then obtained the
values of R, G and B for x-coordinate, y-coordinate
and depth. If we are to obtain the color values from
color images based on depth maps, it is impossible
to obtain all color values even if we conduct
interpolation and preprocessing, since the depth
values are distributed sporadically, unlike color
values. Therefore, we are likely to see lowered
resolution of the objects, and holes tend to remain if
we proceed with 3D modeling in the OpenGL
window.

However, if we use depth values based on the
color values, we can utilize all of the depth values
and maintain the quality of the color
images’resolution. We can have the values of X, Y
and Z (depth) as well as R, G and B after obtaining
the color values from the color images based on X
and Y coordinates, as well as depth values that
correspond to the X and Y coordinates. These
coordinates can be rendered in the OpenGL based
on the order of depth values and X and Y values for
the purpose of point-based 3D modeling.

If we are to obtain X, Y and Z values from depth
map images and B, G and R values from color
images by means of forward mapping, it is likely
that pixels corresponding to the output model will
overlap with one another, or empty holes will be
created with no matching pixels. This is because we
employ backward mapping to obtain depth map
values based on color images as a means of
matching each pixel of the output model to new
pixels of the input images. This way, we can resolve,
to a certain extent, the issue of overlapping pixels
and holes created in the output image as a result of
forward mapping.

Yang-Keun Ahn et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 29 Volume 2, 2017

Fig. 4 Forward mapping

Fig. 5 Backward mapping

2.4 Color/depth Image-based Mesh Creation
Technology
The rendering of information derived from the color
and depth maps eventually creates a point cloud-
based 3D model. However, this 3D model is not a
perfect model due to the existence of holes and
nonblocking space. In order to address this problem,
it is necessary to fill the holes and nonblocking
sections with appropriate values. Using the same
method to fill the holes in the front and flank sides
of an object and the background will not fill the
holes perfectly, since holes filled in the front side
will be emptied when the object revolves around,
constantly leaving empty holes. These holes, created
due to the differences of depth values, must be filled
based on depth, as illustrated in the following Fig. 6.

Fig. 6 Depth map-based hole filling

As shown in the above figure, holes are created

on the boundary lines or the flank side of an object
as a result of the differences of depth values,
because points indicating depth values in the three-
dimensional space of the OpenGL is bound to have

empty spaces between points, unless the depth
differences exist in order.

By not creating space between points, it is
possible to fill the holes and nonblocking sections
on the boundary lines and flank side of an object. A
point-based 3D rendering model forms a perfect 3D
mesh when its holes and nonblocking sections are
completely filled, eventually becoming a perfect 3D
model. This study particularly concentrated on the
inner parts and boundary lines of objects. The inside
holes are mostly filled during preprocessing,
presenting a perfect model when viewed from the
front side. The holes on the boundary lines tend to
be created because one or more differences of depth
values exist, and therefore points cannot exist in
order, rather than because points are lost. Failing to
understand such elements before filling the holes
will prevent creating a perfect 3D model.

In addition, since the infrared rays of the camera
are dispersed on the boundary lines, the points exist
at a location with lower depth values. If this is not
resolved, viewers may feel as if the object is
dispersed backwards when the 3D model revolves
around. In order to address this issue, we set
threshold values for each point after averaging the
depth values of adjacent points, and then cut the
values far behind the threshold value and pushed
inside the points within a certain permissible range
toward the object, by the difference from the
threshold value. By cutting and moving points in
such a way, we were able to realize smoother and
more natural boundary lines of the 3D object.

Fig. 7 OpenGL subwindow

2.5 Multi-view Color/depth Image Matching
Technology
There are a number of methods of watching 3D
images from a 3D television. The method used in
this study involves adjusting the images with
different viewpoints for the left and right sides and
showing the left image to the left eye and the right
image to the right eye. Human beings grasp a sense

Yang-Keun Ahn et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 30 Volume 2, 2017

of distance, or the degree of depth, by using the
parallax of their two eyes. In a similar way, viewers
can experience a sense of depth when a 3D model
created in the OpenGL is rendered onto a screen
differently in the left and right sides, and the y-axis
of the object is rotated to show another image.

In this program, we used the OptiTrack camera
to identify the location of the viewer’s eyes and
revolve both the left- and right-side 3D model by
the distance needed to match the eye level based on
the y-axis. Since the object is rotated just to the
point of a viewer’s eyes, the viewer can have the
experience of watching 3D objects as if they
actually revolved around.

The OpenGL has either a single window, or a
multi-window. This project required both the left
and right images at the same time. For this, we
chose the subwindow and multi-window modes of
the OpenGL. We employed the subwindow mode in
3DModel-FHD and separately output the object of
such window in a 1920*1080 television.

There are certain circumstances when we have to
take caution in drawing two or more windows or
consecutively drawing a 3D model in a subwindow:
Since the OpenGL draws points or objects in order,
the image drawn earlier could be distorted. This is
because the models or their points drawn at a
different timing could be seen as a mingled form
based on the priority of points, not the priority of
depth values.

In order to address this issue, the
glEnable(GL_DEPTH_TEST); function is used, so
that the OpenGL can organize a 3D model again
based on depth values even when the model is
mixed based on the order of points. Using a number
of windows can solve the problem of 3D model
objects being distorted.

There is another aspect to pay attention to when
drawing points or objects in OpenGL: the use of
glbegin(); and glend(); functions. The former must
be called before drawing an object in OpenGL and
the latter at the end. However, using these functions
indiscriminately is likely to cause the
programs’performance to decline. Since the point
cloud has a great number of points during the point-
based 3D rendering, using those functions every
time such a point is drawn is significantly damaging
to the performance.

The method of solving this problem is to use the
glbegin(); function by sending the point cloud to the
for loop and use the glend(); function after finishing
drawing all points. When drawing points, the
number of which spans between 90,000 and 600,000,
there is a considerable difference between calling
the two functions up to 600,000 times and just once.

The three-dimensional effect is not created
instantly by the existence of left and right images to
produce a stereoscopic 3D effect. The left and right
images must have parallax when viewers actually
watch them; if a 3D model with the same viewpoint
in the left and right sides is presented, viewers just
see an image with no three-dimensional effect. Thus,
it is necessary to present the images actually seen
from the left and right eye of a viewer as left and
right images. In order to create an image with
different viewpoints by using a single model, the 3D
models in the left and right windows each need to
move based on the y-axis. Therefore, it is possible
to create left and right images that actually have
left-right parallax if the left image is rotated towards
the right and the right image to the left.

Fig. 8 3DModel-FHD control UI

Fig. 9 3D television UI

Fig. 10 Television image with 3D mode

Yang-Keun Ahn et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 31 Volume 2, 2017

2.6 Lenticular Images Synthesizing Eight
Viewpoints for Glasses-free 3D Model
A lenticular lens is required in order to watch a 3D
model without glasses. A lenticular lens presents an
image matching the direction from which a viewer
watches. This project used the lenticular 3D display
of Alioscopy3DHD24, which automatically presents
up to eight viewpoints in the form of a stereoscopic
3D display. This display shows images adjusted to a
users’location because the curved lenticular lens can
deliver one of the eight viewpoints synthesized
beforehand, and users watch the refracted image.

Fig. 11Cross-sectional diagram of the lenticular lens

Fig. 12 Method of watching an image from eight

viewpoints through a lenticular lens

In order to watch a 3D model without glasses in

a multi-view lenticular 3D display, it is necessary to
synthesize eight-viewpoint images into a single
image. What distinguishes an eight-viewpoint image
from the existing one-viewpoint image is that R, G
and B values for each pixel are obtained from eight
viewpoints in order, not from a single viewpoint.
For example, each R, G and B value for Pixel 1
comes from each R, G and B value of first, second
and third viewpoints, respectively. Again, each R, G
and B value for Pixel 2 comes from each R, G and B
value of fourth, fifth and sixth viewpoints,
respectively. Then, the G value for Pixel 3 comes
from the G value of eight viewpoints, and the B
value for Pixel 1 from the B value of the first-

viewpoint image. This way, one image can be
synthesized with images with eight different
viewpoints.

Fig. 13 Method of synthesizing eight-viewpoint

images

Fig. 14 Lenticular image of synthesizing eight

viewpoints

Fig. 15 Image of synthesizing eight viewpoints seen

from Alioscopy3DHD24

Yang-Keun Ahn et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 32 Volume 2, 2017

Fig. 16 Control UI

3 Experiment
The development environment included the
operating system of Windows7, Tool Visual Studio
2010 and C++, while the hardware was organized
with reflective marker 3D glasses, OptiTrack Flex
13 infrared camera, 3D display, desktop with Intel
i7-2600K with 3.48GBRAM.

As the measurement values for comparing image
quality, we used the values of peak signal-to-noise
ratio (PSNR), which indicates the power of noise
against the maximum electric power that signals can
have. These values are mostly used for assessing
information on the loss of image quality due to lossy
video compression and allows a quantitative
understanding of differences of two different images.
In this study, the PSNR values were obtained by
means of the formula given in Fig. 17. In the
formula, MSE means the variation of the relevant
image, and MAX refers to the maximum value of
the relevant image and can be obtained by
subtracting the minimum values from the maximum
value of the relevant image channel. The PSNR is
expressed in the unit of dB. Since the value is
measured at the log scale, lower loss is expressed
with higher numerical values.

Fig. 17 PSNR measurement formula

The resulting value of 34.09dB is considered

appropriate.

The rate of 3D model creation was measured to
be 0.608sec, approximately five seconds faster than
the time required for a 3D model creation in the
fourth-year evaluation. The program renewed the
record of the relevant 3D model at an average of
15fps.

Fig. 18 PSNR experiment process

4 Conclusion
The main purpose of this project was to enable users
to feel the 3D space and object in real time through
3D modeling. To that end, we focused our
endeavors on improving the user experience, and as
a result, this project was able to substantially
enhance the experience of 3D space and objects
compared to the previous third-year project. We
believe that advancement of the depth camera
technology and subsequently higher resolution will
allow users to experience 3D contents and services
with better quality as soon as the images are shot.

References:
[1] Wei Wang, Longshe Huo, Wei Zeng,

Qingming Huang, Wen Gao, "Depth Image
Segmentation For Improved Virtual View
Image Quality In 3-DTV," Proceedings of 2007
International Symposium on Intelligent Signal
Processing and Communication Systems, Dec.
2007.

[2] Liang Zhang and Wa James Tam "Stereoscopic
Image Generation Based on Depth Image for
3D TV," IEEE Transactions on Broadcasting
vol. 51, no. 2, Jun. 2005.

[3] Wenxiu Sun, Lingfeng Xu, Oscar C. AU, Sung
Him Chui, Chun Wing Kwok," An overview of
free viewpoint Depth-Image-Based Rendering

Yang-Keun Ahn et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 33 Volume 2, 2017

(DIBR)," The Hong Kong University of
Science and Technology.

[4] Lee Sang-beom, Ho Yo-seong, “Discontinuity-
adaptive Depth Filtering for 3D View
Generation,” The Korean Institute of
Communications and Information Sciences,
2008 Collection of Conference Dissertations
(Autumn), Nov. 2008, pp. 358-361.

[5] Hyeon Ji-ho, Han Jae-yeong, Won Jong-pil, U
Ji-sang, “Generation of an Eye-contacted View
Using Color and Depth Cameras,” Journal of
the Korea Institute of Information and
Communication Engineering, vol. 16, no. 8,
2012, pp. 1642-1652.

[6] Ryusuke Sagawa, Katsushi Ikeuchi, "Hole
filling of a 3D model by Flipping Signs of a
Signed Distance Field in Adaptive Resolution,"
IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 30, no. 4, Apr. 2008.

[7] David Doria, Richard j. Radke, "Filling Large
Holes in LIDAR Data By Inpainting Depth
Gradients," Computer Vision and Pattern
Recognition Workshops (CVPRW), 2012 IEEE
Computer Society Conference on, Jun. 2012.

Yang-Keun Ahn et al.
International Journal of Signal Processing

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 34 Volume 2, 2017

