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Abstract: - The problem of selecting a best representative image from a group of similar images is an important 
problem as it can expedite the task of image search and image matching. We solve this problem by first 
measuring the similarity between every pair of image in the set by a suitable similarity measure, and then 
transforming the problem to similarity space and finding the corresponding locations of the images in the 
similarity space. Finally, the image located closest to the center of the preoccupied similarity space is selected 
as the best representative image. The difficulty in such a problem arises in attempting to find the locations of N 
images in the similarity space, since this leads to a set of N(N–1) non-linear simultaneous algebraic equations 
with N2 unknowns. We solve such a problem by forcing the solution to be in N–1. We present a closed-form 
solution for the cases when N = 3, 4 and 5. We give examples of finding the best representative images for two 
sets as an application of the method.  
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1 Introduction 
The generation and acquisition of images has never 
been as widespread as it is today. Worldwide, and 
on a daily basis, millions of images are easily being 
generated by inexpensive mobile phones and digital 
cameras. A simple examination of the number of 
images posted on social media networks is 
tremendous; in mid-2014, it was estimated that 1.8 
billion photos were being uploaded to the top five 
social networks on a daily basis [1]. In addition, a 
vast number of images are being generated on a 
continuous basis for research, monitoring and 
measurements. For example, satellite cameras 
generate a huge amount of images for weather 
forecasting, military surveillance, mineral 
exploration, space exploration and urban planning. 
The generation of such huge quantities of images 
has raised technical problems that are in need of 
real-time solutions. Image organization and 
categorization, as well as efficient image search 
techniques, are just two problems that have 
promoted much research. 
One sub-problem of interest in image search, is 
selecting an adequate image representative from a 
collection of images, based on some similarity 
criteria. If such an image can be adequately 
determined, then databases can be searched quickly 
and efficiently for a given query image, by only 

comparing it to a finite number of representative 
images (which are predetermined offline prior to the 
search), rather than comparing all images in the 
database. 
Many similarity metrics have been developed to 
measure similarity between images such as image 
correlation [2], image subtraction [3], mutual 
information [4], minimizing image intensity co-
occurrence [5] and the Hamming distance [6]. With 
such metrics, the similarity distance between images 
can be easily calculated. By obtaining the similarity 
distance between every pair of images for a given 
set of images, the problem can be transformed to 
similarity space and one can hope to determine the 
position of the images in it. Once the location of the 
images in similarity space is determined, then the 
center of the preoccupied similarity space can be 
determined. The closest image to the center of the 
space can then be selected as the best representative 
image of the set.  
However, the difficulty lies in determining the 
positions of the images in similarity space, since this 
produces a set of non-linear algebraic equations of 
the form,  
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where x<k> is the kth dimensional variable, i.e.,   
x<1>= x, x<2>= y, x<3>= z, … , etc. In general, such a 
system of equations is difficult to solve analytically. 
However, under certain conditions and assumptions, 
an analytical solution can be found as we show in 
this paper. We present a closed form solution to the 
problem of finding the coordinates of N images in 
N-1 similarity space for the cases when N = 3, 4 
and 5.  
This paper is organized as follows; section 2 briefly 
discusses the difficulties associated with non-linear 
algebraic equations and finding closed form 
solutions to them. Section 3 presents the main theme 
of the paper: the problem addressed and our 
approach to solving the problem. Section 4 presents 
two examples on the application of the proposed 
solution. Section 5 finally concludes our work and 
discusses where our research is headed, 
 
 
2 Non-Linear Algebraic Equations 
Most non-linear algebraic equations are difficult to 
solve analytically and only a small fraction of them 
have an analytical solution. The difficulty is 
amplified when there is more than one variable to 
solve; in this case a system of simultaneous non-
linear algebraic equations are produced that need to 
be solved.  
Because of the difficulty in solving such problems 
most solutions are usually numerical and not 
analytical. Many numerical methods are available 
that can be used to solve these equations such as, the 
Secant Method, Newton’s method, Muller’s method, 
and others [7] [8] [9]. Ongoing research in the last 
several decades has concentrated primarily on 
improving these methods, e.g. [10] [11] [12]. 
Nevertheless, all numerical methods require an 
initial guess that is “close” to the solution for the 
solution to converge. If the initial guess is “bad”, 
then convergence to a solution -most likely- will not 
occur. Techniques are available that can aid in 
finding a solution, such as sketching the equation 
and bracketing the solution. However, when the 
equations become multi-dimension in more than 3 
coordinates, then such techniques become extremely 
difficult -if not impossible to solve. Needless to say, 
as the number of unknowns in the problem 
increases, finding a numerical solution becomes 
even more of a challenge. However, despite such 
difficulties, under certain conditions, closed form 
solutions have been found for many cases, e.g. [13] 
and [14]. 
 
 

3 Problem Formulation 
Given a set of N images whose similarity distance 
matrix r is given, we are interested in determining 
the best representative image from among the 
images, based on the similarity distance employed. 
This is equivalent to the problem of finding the 
coordinates of N points, Pi for i = 1, …, N, given the 
distance between them ri,j. 
 
 
3.1 A Closed Form Solution  
We are particularly interested in finding a closed 
form solution to the problem, i.e. finding the relative 
coordinates of the points, Pi = (xi, yi , zi, …) in multi-
dimensional space. Let, 

| P1 – P2| = r1,2 

| P1 – P3| = r1,3 

: 
| P1 – PN| = r1,N 

| P2 – P3| = r2,3 
: 

| PN-1 – PN| = rN-1,N 

 

(2) 

 
These equations can be rewritten as, 
 

(x1 – x2)2 + (y1 – y2)2 + (z1 – z2)2 + … = r2
1,2 

(x1 – x3)2 + (y1 – y3)2 + (z1 – z3)2 + … = r2
1,3 

: 

(xN-1  – xN)2 + (yN-1 – yN)2 + (zN-1 – zN)2 + … 

= r2
N-1,N  

 

(3) 

 
This is a system of N(N–1)/2 non-linear algebraic 
equations with N2 unknowns. Thus, the system is 
underdetermined.  
Geometrically, this system of equations represent 
the intersections of N hyper-spheres in N–1 space, 
and the intersection of the hyper-spheres at common 
points represent the solution to these equations (i.e. 
the coordinates of Pi).  
Since the relative positions are sought here and not 
the absolute coordinates of Pi (which are non-
recoverable), it can be shown that the solution space 
can be reduced to N–1 instead of N space (and 
perhaps even a lower space in some cases). This 
reduces the number of unknowns to N(N–1), but still 
leaves the system underdetermined by N(N–1)/2 
(with infinite solutions). Hence, we have the 
freedom of placing N(N–1)/2 constraints. Let, 

Adnan A. Y. Mustafa
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 178 Volume 1, 2016



| Pi – Pj| = ri,j,  i = 1, … , N -1,  j = i +1,… , N   
 (4) 

This can be written compactly as (1). Expanding (1),  
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(5) 

We place the following N(N – 1)/2 constraints: 
xi

<k>= 0,        i = 1, … , N 1, k = 1, … , N I   (6) 

This implies, 

x1
<k> = 0, k = 1, … , N 1 

x2
<k> = 0, k = 1, … , N  2 

: 

xN-1
<k> = 0, k = 1 

 

 

(7) 

This forces the solution coordinate matrix x, which 
is not square, but rather NK (i.e. NN–1), to be 
arranged such that it is lower triangular of the form,  
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In other words, P1 = (0, 0, , 0) is forced to be at 
the origin, P2 = (0, 0, , 0, x2

<k>) is forced to be on 
the kth axis, P3 = (0, 0, , 0, x3

<k-1>, x3
<k>) is forced 

to be on the (k1)th-kth plane, and so on. This will 
produce 2N-1 solutions exhibiting a symmetric 
pattern; each successive point placed on a given 
coordinate axis produces two solutions for the next 
point, exhibiting reflection about this axis. The 
constraints can be incorporated into (5) as,
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Hence,  is of the form, 
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3.2 Existence of Other Solutions 
As earlier stated, there are an infinite number of 
solutions as can be easily verified by multiplying x 
by a transformation matrix, T, with any 
translational or rotational value, producing a new 
coordinate matrix x', 

x' = T x     (12) 

T is N×N,  


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
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SD
HR

T     (13) 

R is a rotational matix of size (N1)×(N1), D is a 
translational vector of size 1×(N1), H is a shear 
vector of size (N1)×1, and S is a scaling value. 
Here, H = [0 0 ...] is a null vector and S = 1. As an 
example, for N = 3, then R is 2×2 and D is 1×2: 








 
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)θcos()θsin(
)θsin()θcos(

)θ(RR   (14) 

D = [x  y]   (15) 

where  is the rotation angle, and (x,y) are the 
translational offset. 

 
3.3 Closed-Form Solutions  
In this section we present closed-form solutions for 
the cases when N = 3, 4 and 5. 
 
 
3.3.1 Closed-Form Solution for N = 3 
For 3 points, the solution space can be found in 2. 
This is because the location of any 3 points lie on a 
2D plane. The equations are, 
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Applying (6) produces, 

x1= 0, y1
 = 0    (19) 

x2= 0                                            (20) 

Substituting the constraints into equations (16) – 
(18), reduces these equations to the following,  
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(26) 

x3 and y2 each have two solutions: one negative and 
one positive. Hence 4 solutions are possible. The 
coordinates of the points P1 – P3 for all four 
solutions are: 
 

1. P1 = (0,0), P2 = (0, r1,2), P3 = (|x3|,|y3|) 
2. P1 = (0,0), P2 = (0, r1,2), P3 = (|x3|,|y3|) 
3. P1 = (0,0), P2 = (0, r1,2), P3 = (|x3|,|y3|)  
4. P1 = (0,0), P2 = (0, r1,2), P3 = (|x3|,|y3|) 

Fig. 1 shows the four possible solutions of placing 
P2 on the y axis a distaance r1,2 from the origin. Eq 
(21) represents a circle about P1 with raduis r1,2 
reaching P2 (not shown in the figure). The circle 
about P1 with raduis r1,3 represents Eq (22) and the 
circle about P2 with  raduis r2,3 represents Eq (23). 
The solution to the problem is found by finding the 
intersection of these two circles. This produces two 
solutions when P2 = (0,y2) = (0,+r1,2) and two 
solutions when P2 = (0,r1,2). 

 

 

Fig. 1. The four solutions located about the origin 
when P2 is placed a distance r1,2 from the origin on 
the y-axis for N = 3. Two solutions for P2

(1)
 = (0,y2) = 

(0,+r1,2): P3
(1,1) and P3

(1,2), and two solutions for     
P2

(2)
 = (0,y2) = (0, –r1,2): P3

(2,1) and P3
(2,2). 

 
 
3.3.2 Closed-Form Solution for N = 4  
For N = 4, the solution space can be found in 3   
(K = 3). In this case there are 6 equations with the 
12 unknowns: Pi = (xi, yi, zi), i = 1 … 4. The 
governing equations are, 
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The 6 coordinate constraints are, 

x1 = 0, y1
 = 0, z1

 = 0  (33) 

x2 = 0, y2
 = 0   (34) 

 x3
 = 0     (35) 

This reduces the number of unknowns to 6. 
Applying the constraints to equations (27) – (32) 
produces, 
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Solving for the system of equations (36) – (41) by 
back-substitution produces, 
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Note that z2, y3 and x4 each have two solutions: one 
negative and one positive. Hence there are 8 
solutions: 
 

1. P1 = (0,0,0), P2 = (0,0,z2), P3 = (0,y3,z3),     
P4 = (x4,y4,z4) 

2. P1 = (0,0,0), P2 = (0,0,z2), P3 = (0,y3,z3),     
P4 = (–x4,y4,z4) 

3. P1 = (0,0,0), P2 = (0,0,z2), P3 = (0,–y3,z3),    
P4 = (x4,–y4,z4) 

4. P1 = (0,0,0), P2 = (0,0,z2), P3 = (0,–y3,z3),   
P4 = (–x4,–y4,z4) 

5. P1 = (0,0,0), P2 = (0,0,–z2), P3 = (0,y3,–z3), 
P4 = (x4,y4,–z4) 

6. P1 = (0,0,0), P2 = (0,0,–z2), P3 = (0,y3,–z3), 
P4 = (–x4,y4,–z4) 

7. P1 = (0,0,0), P2 = (0,0,–z2), P3 = (0,–y3,–z3), 
P4 = (x4,–y4,–z4) 

8. P1 = (0,0,0), P2 = (0,0,–z2), P3 = (0,–y3,–z3), 
P4 = (–x4,–y4,–z4) 

Fig. 2 shows four of the possible eight solutions of 
placing P2 on the z axis a distance |z2| from the 
origin. When P2

(1) = (0,0,+z2), two solutions for P3 
are possibile: one at P3

(1,1) = (0,+y3,+z2) and the 
other at P3

(1,2) = (0,y3,+z2). Each solution for P3 also 

produces two solutions for P4: P3
(1,1) produces 

P4
(1,1,1) = (+x4,+y4,+z4) and P4

(1,1,2) = (–x4,+y4,+z4). 
Alternatively, P3

(1,2) produces P4
(1,2,1) = (+x4,–y4,+z4) 

and P4
(1,2,2) = (–x4,–y4,+z4). The remaining 4 

solutions –not shown in the figure– follow a similar 
argument for P2

(2) = (0,0,–z2). It can be seen that 
each solution pair is a reflection across the z-y plane. 

 
3.3.3 Closed-Form Solution for N = 5 
For N = 5 points, the solution space can be found in 
4; K = 4. In this case there are 10 equations with 
20 unknowns, Pi = (xi, yi, zi, ui), i = 1, …, 5. The 
governing equations are, 
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Fig. 2. The four solutions of placing P2 a distance 
+r1,2 from the origin on the y-axis for N = 4. (i) Two 
solutions for P3

(1,1)
 = (0,y3,z3) = (0, y3,+r1,2): P4

(1,1,1) 
and P4

(1,1,2). (ii) Two solutions for P3
(1,1)

 = (0,y3,z3) = 
(0, –y3,+r1,2): P4

(1,2,1) and P4
(1,2,2).  
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The constraints are, 
  

x1= 0, y1
 = 0, z1

 = 0, u1
 = 0 (58) 

x2= 0, y2
 = 0, z2

 = 0 (59) 

x3
 = 0, y3

 = 0 (60) 

x4
 = 0 (61) 

This reduces the number of unknowns to 10. 
Applying the constraints simplifies equations (48) – 
(57) to,  
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Solving for the system of equations (62) – (71), 
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There are 16 different solutions since u2, z3, y4 and 
x5 each have two solutions: one negative and one 
positive. 
 
 
3.3 Selecting a Solution 
As previously mentioned, the proposed strategy 
results in 2N-1 solutions symmetrically placed about 
the origin. For our specific purpose of finding a 
solution of the best representative image, all 
solutions result in the same representative image, as 
our particular problem is a relative one.  
 
 
3.4 Singularities 
Singularities can appear in the solution if the 
solution space is reducible, i.e. K < N1 (e.g. if       
z3 = 0 in (76)); the proposed solution strategy then 
breaks down. In this case, at least one of the 
unknowns (xi

<k>) –other than those constrained to be 
zero– is also zero. Since the solution space is 
reduced by 1, the number of unknowns are then  
N(N – 2). Hence, N unknowns have been eliminated 
and the number of freedom in constraints is also 
reduced by the same amount. Hence,  does not 
have the form as (11). As a result, this leads to a 
different system of non-linear equations that cannot 
be solved using the proposed strategy. 
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4 Application 
In this section we give two examples on the 
application of the proposed method.  
 
 
4.1 Example #1 
As a first example, we are interested in selecting the 
best representative image from the five binary 
Highway images shown in Fig. 3. Clearly, a great 
amount of similarity exists between these images, 
and obtaing a best representative image for the set 
for matching purposes will eliminate the neeed to 
compare any query image to all images in the set. 
Image corelation is used for the similatary metric. 
The co-corelation distance matrix is,  
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




 
 
Solving for the coordinates of the points in 
similarity space using (62) - (81), produces,  
 

P1 = (0,0,0,0) 

P2 = (0,0,0, 0.477) 

P3 = (0,0, 0.567, 0.501) 

P4 = (0, 0.590, 0.022, 0.504) 

P5 = (0.562, 0.109, 0.113, 0.316) 

as one of the possible 16 solutions for the location 
of the points in similarity space. The center of the 
data is then at, 

P = (0.112, 0.140, 0.132, 0.359) 

Comparing the distance between the centroid and 
each point, results in P2 as the closest point to the 
centroid. Hence, the second image is the best 
representative image of this collection of images.  
 
 
4.2 Example #2 
As a second example, we are interested in selecting 
the best representative image from the five 
grayscale Cameraman images shown in Fig. 4. The 
distance matrix is,  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Fig. 3. Five Highway images with great similarity. 
From top to bottom I1 to I5. 
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Solving for the coordinates of the points in 
similarity space and selecting one of the possible 
solutions produces: 
 

P1 = (0, 0, 0, 0) 

P2 = (0, 0, 0, 0.967)  

P3 = (0, 0, 0.702, 0.523) 

P4 = (0, 0.783, 0.295, 0.516) 

P5 = (0.767, 0.178, 0.319, 0.514) 

The center of the data is at, 

P = (0.153, 0.192, 0.263, 0.504) 

As a result, P3 is the closest point to the centroid. 
Hence, the third image is the best representative 
image of this set.  
 
 
5 Conclusion  
In this paper we have presented a method to find the 
best representative image from a group of images. 
Using a similarity metric, the distance between each 
pair of images is calculated. The location of the 
images in similarity space is then solved by solving 
a set of non-linear simultaneous algebraic equations. 
Since the equations are undetermined, we solve such 
a problem by applying rigid constraints forcing the 
solution to be in N–1, where N is the number of 
images in the set. We present a closed-form solution 
to the problem when N = 3, 4 and 7. We give 
examples of finding the best representative images 
for two sets as an application of the method. 
Our research on this topic is continuous and we 
have been able to derive a general solution for any 
number of images N, which is being tested with 
excellent results, but not yet finalized. We hope to 
report on the general solution in a future article. 
 

 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

Fig. 4. Five Cameraman images of the same scene. 
From top to bottom I1 to I5. 
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