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Abstract: Feature extraction is an essential step in various image processing and computer vision tasks, such as
object recognition, object tracking, image retrieval, augmented reality, and so on. Design of feature extraction
method plays the most significant role in achieving high performance of various tasks. Different applications
create different challenges and requirements for the design of visual features. In this paper, we explored and
investigated the effectiveness of different combinations of promising local feature detectors and descriptors for
non-rigid 3D objects. Different configurations of visual feature detectors and descriptors have been enumerated,
and each configuration has been evaluated by image matching accuracy. The results indicated that the scale-
invariant feature transform feature detector and descriptor achieved the best overall performance in describing

local features of non-rigid 3D object.
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1 Introduction

Feature extraction plays an important role in many
computer vision tasks. A good feature should prop-
erly represent the image characteristics, be repeat-
edly detected in images that capture the same ob-
jects/scenes while under different imaging condition,
and also be distinctive so that it could distinguish it
from other similar images. Besides, an ideal feature
should be robust to imaging variations, such as rota-
tion, viewpoint changes, illumination changes and oc-
clusions. There is no universal defined feature, since
different problems and different types of applications
often have different characteristics. When the applica-
tion domain changes, it usually requires re-designing
feature detector and descriptor to capture features and
achieve high performance. A feature is referred to as
an interesting point/region in an image. Interesting
points/regions are visually salient. Design of feature
extraction method is probably the single most impor-
tant factor in achieving high performance of various
computer vision tasks [1]. Given the large number
of feature extraction methods researched in the litera-
tures, which feature extraction method is the best for
a given application? This question leads us to charac-
terize the available feature extraction methods, so that
the most promising methods could be sorted out. In
this paper, we concentrated on 3D object under differ-
ent viewpoint. In particular, we are interested in rec-
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ognizing 3D objects whose shape is neither fixed nor
known a priori. Previous work on object recognition
has concentrated on rigid objects of known 3D shape
to simplify the task [2, 3]. These approaches have dif-
ficulty in dealing with unstructured objects, and thus
cannot be applied to more generic categories of ob-
jects. Non-rigid object is a significant challenge be-
cause of its large variation and deformation within the
object classes. The non-rigid deformation often ob-
serves large variation globally. Their local structures
are somewhat more invariant to the changes. On that
basis, our focus is on non-rigid 3D object recognition
with local features.

Image local feature extraction usually consists of
two stages: feature detection and feature description.
A local feature commonly refers to a local pattern in
an image that changes from its direct neighborhood
in property or multiple properties of intensity, color,
and texture simultaneously. Feature detection is al-
gorithms that compute abstractions of image informa-
tion and make local decisions at every image pixels
whether there is an image feature of a given property
type. The resulting features are subsets of the image
domain, often in the form of isolated points, continu-
ous curves or connected regions. Once the feature is
detected, the local image patch around the feature is
extracted and generated as the feature descriptor.

In this paper, the effectiveness of several promis-
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ing local features on 3D non-rigid objects are explored
and investigated. We configure different visual feature
detectors and descriptors, and evaluate each configu-
ration in detail. To the best of our knowledge, existing
research on the comparison of visual feature detectors
and descriptors are conducted for other computer vi-
sion tasks. In literature [3] the effectiveness of differ-
ent visual feature detectors and descriptors are com-
pared for mobile visual search of rigid product like
books and CDs. The comparison study in literature
[4] is focused on the visual object categorization. Nei-
ther of these comparisons targeted the effectiveness of
3D object recognition, the focus of this paper. The
performance of different combination of visual fea-
ture detectors and descriptors on non-rigid 3D object
has not been fully understood. The contribution of our
work is filling this knowledge gap. Different combi-
nations of detector and descriptor are enumerated and
evaluated by the accuracy of image matching. This ac-
curacy indicates how accurately the repeatable salient
local features can be detected, described, and matched
from one imaging condition to another.

The paper is organized as the follows. In Sec-
tion 2, we have a literature review of classic and re-
cent feature extraction techniques. Section 3 discusses
the details of the researched feature detectors and de-
scriptors. In Section 4, several experiments of differ-
ent combination of feature detector and descriptor are
conducted on the benchmark datasets. And their per-
formances are compared in the forms of accuracy of
image matching. Finally, we conclude comparison re-
sults with promising feature extraction techniques and
discuss future works in Section 5.

2 Related Work

Local feature, representing local patches of an image,
has shown promise in many tasks of computer vision,
such as image match, object recognition, image reg-
istration and so on. Feature detection is utilized as
the initial step in local feature extraction algorithms.
It is a classic research area in image processing and
computer vision. And there are a variety of differ-
ent types of features, e.g. edges, corners/keypoints,
regions of interest and ridges. The corner/keypoint
is treated as the same concept since a corner can be
not only considered as an intersection of two lines,
but also a point that has two different edge directions
within a local window of the point. Likewise, a key-
point can be defined as a corner, line endings, a point
of local intensity maximum or minimum, or a point
on a curve where the curvature is local maximum. As
a result, the corner/keypoint detection is mainly di-
vided into edge-based method and gray density based
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method. Current research is focused on gray density
based corner/keypoint detection, since a small degree
variation of the target object leads to great difference
in edge extraction, and the edge extraction is compu-
tationally expensive [5, 6]. Gray density based ap-
proach detects the corner/keypoint by calculating the
curvature and gradient of points. Moravec operator,
Forstner operator, Harris operator and SUSAN oper-
ator are some of the examples. Harris operator [7]
is the most classic detector among them. Mikola-
jezyk takes the scale space theory into consideration
and proposes Harris-Laplace detector, which applies
Laplace-of-Gaussian (LoG) for automatic scale selec-
tion [8]. It obtains scale and shape information and
can represent local structure of an image. Lowe ap-
plies Difference-of-Gaussian (DoG) filter, an approx-
imate to LoG, in the SIFT algorithm to reduce compu-
tational complexity [9]. Also, in order to increase the
algorithm efficiency, Hessian Affine, FAST, Hessian-
blobs, and MSER are further proposed. In [10], Miko-
lajczyk et al. extract 10 different keypoint detec-
tors within a common framework and compare them
for various types of transformations. Van de Sande
extracts 15 types of local color features, and exam-
ines their performance on transformation invariance
for image classification. Many detection methods are
studied seeking a balance between keypoint repeata-
bility and computational complexity [11].

After the keypoint detection, we compute a de-
scriptor on the local patch. Feature descriptors can
be divided into gradient-based descriptors, spatial fre-
quency based descriptors, differential invariants, mo-
ment invariants, and so on. Among them, the his-
togram of gradient-based method has been wildly
used. The gradient histogram is used to represent dif-
ferent local texture and shape features. The Scale In-
variant Feature Transform (SIFT) descriptor proposed
by Lowe is a landmark in research of local feature de-
scriptor. It is highly discriminative and robust to scal-
ing, rotation, light condition change, view position
change, as well as noise distortion [9]. Since then, it
has drawn considerable interests and a larger number
descriptors based on the idea of SIFT emerges. SURF
[12] uses the Haar wavelet to approximate the gradi-
ent SIFT operation, and uses image integral for fast
computation. DAISY [13, 14] applies the SIFT idea
for dense feature extraction. The difference is that
DAISY use Gaussian convolution to generate the gra-
dient histogram. Affine SIFT [15] simulates different
perspectives for feature matching, and obtains good
performance on viewpoint changes, especially large
viewpoint changes. Since SIFT works on the gray-
scale model, many color-based SIFT descriptors are
proposed to solve the color variations, such as CSIFT,
RGB-SIFT, HSV-SIFT, rgSIFT, Hue-SIFT, Opponent
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SIFT, and Transformed-color SIFT [11, 16, 17]. Most
of them are obtained by computing SIFT descriptors
over channels of different color space independently;
therefore they usually have higher dimension (e.g.
3 x 128 dimension for RGB-SIFT) descriptors than
SIFT. The color boosted SIFT introduced in [18] in-
volves the amended color histogram factor based on
RGB color space model into the SIFT. It retains suf-
ficient color information and is robust to photometri-
cal variations. Song et al. proposed compact local
descriptors using an approximate affine transform be-
tween image space and color space [19]. Burghouts et
al. performed an evaluation of local color invariants
[20].

3 Local Feature Extraction for Non-
rigid Object

In this section, we discuss the visual features consid-
ered in our work. The feature detectors include Har-
ris, FAST, SIFT, SURF, and BRISK detectors. For
the descriptions, the BRISK, SIFT, and SURF fea-
ture descriptors are considered. We choose these fea-
ture detectors and descriptors for the following rea-
sons. First, Harris detector is the best-known operator
around. The SIFT is the most widely used and suc-
cessful detector developed in recent decade for differ-
ent computer vision. The FAST, SURF, and BRISK
detectors achieve a good balance between the detec-
tion performance and computation complexity. Sec-
ond, the selected feature descriptors have the poten-
tial to handle the task of object recognition based on
previous studies of other researchers. For instance,
Chandrasekhar et al. [3], compared several feature
descriptors for visual search application, and reported
the SIFT feature descriptor as one of the promising
one. The SIFT and SURF are concluded in Lanki-
nen?s work [4] as the top two reliable descriptors for
visual object classification. The BRISK descriptor is
considered in our work because of its big advantage in
computation speed.

3.1 Harris Detector

Harris detector, proposed by Harris and Stephens [7],
is developed from the auto-correlation matrix, also
called the second moment matrix. Given an image I,
an approximation to the local auto-correlation matrix
of I is computed at every pixel (z,y):

M(z,y) =
Sweol2@mzy)  Sweele(ee o) ly@n ) | (1)
S oIz (T, Ty ) Iy (T, Ty) S w12 (@, @y)

where [, and I, are the partial derivative of im-
age I(z,y) with respect to x and y. (x,,y,) =
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(x + u,y + v) and w(u,v) is the weighting func-
tion. w(u, v) can be a constant or a Gaussian function
exp( =)t )

M presents the gradient distribution in a local
neighborhood of an image pixel (z,y). The image
pixel can be classified into three regions according to
the eigenvalues Ay and A2 of M. If both A; and A9
are small, the image pixel belongs to flat region. If \;
is far larger than Ao or vise versa, the image pixel is
located in edge region. If both \; and )y are large and
A1 & Ao, the pixel is the corner in the image. In order
to reduce the computation cost, Harris proposed a cor-
nerness measure that derived from two eigenvalues:

c(z,y) = Mo — a(A + A2)?

2
= det(M(z,y)) — o - [trace(M (z,y))]? @

where c¢(z,y) denotes the cornerness measure,
det(M(z,y)) is the determinant of M(z,y), and
trace(M (z,y)) is the trace of M (x,y). « is the expe-
rience constant, typically ranging from 0.04 to 0.06.

Then, non-maximum suppression is performed in
a3 x 3 or b x bneighborhood, and the local maxima
of the corneress function forms the corner features of
the image.

3.2 Features from Accelerated Segment Test

FAST is a high-speed corner detector developed by
Rosten and Drummond [21]. The detection is per-
formed on a discrete Bresenham circle around a can-
didate image pixel p. If there is a set of contiguous
pixels at least nine on the circle around p, and they are
all brighter or darker than the intensity of p by a pre-
defined threshold ¢, then p is considered as a corner
candidate. Besides, the algorithm is accelerated with a
decision tree to reduce the number of pixels that need
to be processed. Subsequently, the following score is
computed at each corner candidate to remove the false
candidates:

s(pmax( Y |Ig— Tl —t, > [I;— Il —t) (3)

qES+ qeES_

where S is the subset of contiguous pixels that are
brighter than p by ¢ on the circle. S_ is the subset of
contiguous pixels that are darker than p by ¢ on the
circle. The corner candidates, who have an adjacent
corner with a higher score, will be removed. Then,
non-maximum suppression is applied to locate corner
features.

3.3 Binary Robust Invariant Scalable Key
Points

BRISK, proposed by Leutenegger et al. [22], is a bi-
nary local feature detection and description method
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with very high computational efficiency. The first step
is to create a scale space pyramid, generally consist-
ing of 4-layer octave images and 4-layer intra-octave
images. Each octave is half-sampled from previous
octave, and each intra-octave is down-sampled so that
it is located between two octaves. Next, the FAST de-
tector score s is computed at each octave and intra-
octave to generate the keypoint candidates. Non-
maximum suppression is then performed at each oc-
tave and intra-octave so that score s is the maximum
within a 3t¢mes3 neighborhood; and score s is the
largest among the scales above and below. These max-
ima are then interpolated using a 1D quadratic func-
tion across scale spaces and the local maximum is
chosen as the scale for the feature found.

Given a set of the detected keypoints, the BRISK
descriptor is constructed as a binary descriptor by sim-
ple brightness comparison tests. The brightness com-
parison test is performed on the samples in a pattern.
This pattern is defined as N equally spaced locations
on circles concentric with the keypoint.

3.4 Scale-Invariant Feature Transform

SIFT, introduced by Lowe [9], is a scale invariant fea-
ture detector with highly distinctive feature descrip-
tor. In order to achieve scale invariance, a scale space
pyramid of images is first built through convolutions
of image [ with differences of Gaussians (DoG) at dif-
ferent scales o

Don,U(x,y) = G(l‘ay) kJO’) - G(x,y,a) (4)

Then, each sample is compared with its 3 x 3 neigh-
bors at current layer I,,, as well as the 3 x 3 neigh-
bors from layers above and below (/,,—; and I,,41)
at the same octave. These local extrema are consid-
ered as keypoints. Further, the keypoint location is re-
fined by interpolating the sample points and its direct
neighbors. Keypoints with low contrast and small ra-
tio of principal curvatures are removed. Subsequently,
the gradient magnitudes and orientations of the re-
maining keypoints are computed. The orientations are
then weighted by a Gaussian window and the gradient
magnitude, and the dominant orientations are sorted
out from the histogram of the weighted orientations.
If multiple dominant orientations exist at a keypoint,
for every dominant orientation an additional keypoint
are generated.

Now, the located keypoints have been assigned
with orientations and scales. A local coordinate sys-
tem can be defined to compute the SIFT descriptor.
A new orientation histogram is computed within a
16 x 16 local window and then 4 x 4 sub windows.
For each sub window, the orientation histogram is cal-
culated with 8 bins and weighted again by a Gaussian
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window and corresponding gradient magnitude. This
yields the SIFT descriptor of length 128 (4 x 4 x 8).

3.5 Speeded-Up Robust Features

SUREF, designed by Bay et al. [12], is similar to SIFT
with faster feature detection and description. SURF
detector is developed from the determinant of the Hes-
sian matrix. It then employs box filters to approximate
the second order Gaussian partial derivative for scale
space analysis. The score in SURF is defined as:

5(2,y,0) = Dyu(0) - Dy () = [0.9D4y ()]

®)
~ det(H (z,y,0))

where D, D,, and D,, are the convolution of
the image using box filters. Constant factor 0.9 is
chosen to make the approximate solution closer to
det(H (z,y,0)). Then, a non-maximum suppression
is performed in a 3 x 3 x 3 neighborhood, and the
resulted maxima are interpolated across scale spaces
to localize the keypoints. Once the SURF features
are localized, the SURF description is addressed in
two steps: first, extracting an orientation accord-
ing to the information from a circular region around
the keypoints; second, defining a square region ori-
ented along the formed orientation, and computing
the SURF descriptor from the square region. Specifi-
cally, the circular region in the first step is convoluted
with Haar wavelet along = and y axes. The radius of
the circular neighborhood is decided by the scale, at
which the keypoint is detected. So do the sampling
step and wavelet response. The wavelet response is
then weighted with a Gaussian, and represented as a
vector with response strength along x and y axis. The
dominant orientation is determined by the sum of all
responses within a rotating square window. Next, this
orientation window is further split up to 4 x 4 sub
square windows, and the descriptor vector is defined
as:

v=[Yde Ydy Nlds Yldyl ] (6)

d; and d, denote the Haar wavelet responses in z and
y directions for each sub square region. The generated
descriptor vector has a length of 64 (4 x 4 x 4).

4 Experiments and Analysis

4.1 Data Set

In order to evaluate the performance of different fea-
ture detectors and descriptors, we conducted several
experiments of image matching on the benchmark
dataset of Oxford Dataset [23]. We also perform
experiments on the benchmark dataset of Columbia
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Object Image Library - COIL 100 [24]. Figure 1
show typical images selected from these datasets. The
Oxford dataset has been widely used for evaluat-
ing performance of local image descriptors. It con-
tains image pairs under various image transforma-
tions, including scale, rotation, image blur, illumina-
tion, JPEG compression and viewpoint changes. The
dataset also contains ground truth homographies cor-
responding to the image pairs. Figure 1 (a) shows
some image pairs under different image transforma-
tions in this dataset. COIL 100 is a database of color
images of objects. The objects are placed on a mo-
torized turntable against a black background. The
turntable is rotated through 360 degrees to vary ob-
ject pose with respect to a fixed color camera. Images
of the objects are taken at pose intervals of 5 degrees.
This corresponds to 72 poses per object and the im-
ages are size normalized.

(a)
| ) o |68 S |-~ § || @[>
GG X [T~
w5 ESEELY
—ENCEEEL R
EIIEEEIEI%

= O
HERI - =28
HeEEREREN
ERU="HOHEE
=HIEuZUSEE

(b)

Figure 1: Typical images selected from the datasets
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4.2 [Experimental Evaluation and Analysis

In this experiment we implement 5 feature detectors
(Harris, BRISK, FAST, SIFT and SURF) and 3 de-
scriptors (BRISK, SIFT, and SURF) in MATLAB.
All combinations are evaluated except for the SIFT-
BRISK, since the SIFT detector is not compatible with
BRISK descriptor.

Table 1: Average accuracy for different combinations
of feature detectors and descriptors

Descriptor
Detector | BRISK SIFT SURF
Harris | 0.3351 0.3264 0.3018
BRISK | 0.4288 0.4113 0.3907
FAST | 0.4637 0.5021 0.4579
SIFT N/A 0.5137 0.3725
SURF | 0.4110 0.4556 0.4232

The average accuracy of image matching for ev-
ery combination of feature detectors and descriptors
are recorded in Table 1. The results show that the
combination of SIFT-SIFT provides the most accurate
matching features at matching rate of 0.5173. Follow-
ing it, the combination of FAST-SIFT achieved com-
parable performance of matching rate 0.5021. With
the same detector, SIFT descriptor and BRISK de-
scriptor performs better than SURF descriptor gener-
ally, except for the case of SURF detector.

5 Conclusion

In this paper, we evaluated the effectiveness of dif-
ferent combinations of local feature detectors and de-
scriptors for non-rigid 3D objects. We selected several
classic and widely used visual feature detectors (Har-
ris, BRISK, FAST, SIFT, and SURF) and descriptors
(BRISK, SIFT, and SURF). The primary difference
between this work and the comparison studies of other
researchers is that they are targeted in different appli-
cations, so that face in different visual characteristics
and raise new challenges. It was unclear which feature
detection and description methods are best suitable for
non-rigid 3D objects. Our evaluation results indicated
that the SIFT achieved the best overall performance
in describing image local features. This finding could
benefit reshaping existing or ongoing other research
work based on visual feature, such as non-rigid object
visual search. We will use these findings in the fu-
ture to tune and design new visual features to improve
object recognition accuracy and adapt to different ap-
plications.
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