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Abstract: In this work we focus on a recently developed method we called Tridiagonal Folmat Enhanced Mul-
tivariance Products Representation (TFEMPR) using folded matrices (folmat) in order to decompose multiway
arrays. We give results of some numerical implementations for 3-way arrays. To avoid complexity of multiway
array decomposition on each direction (way, dimension) we use folmats which provides binary decomposition.
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1 Introduction
Multivariate analysis and decomposition have always
been considered important in the nature of scientific
problems [1–8]. Decomposing of multivariance and
representing multivariance in terms of less variate en-
able us to reduce computational complexity and fa-
cilitates the analysis. Enhanced Multivariance Prod-
ucts Representation (EMPR) [9–13] is a decomposi-
tion method and represents multiway arrays in terms
of less variate arrays. EMPR of a matrix, which is in
fact a 2-way array, can be given as follows.

A = αuvT + a1vT + ua2
T + A12 (1)

This representation consists of four term respectively
a constant, a first-way, a second-way and finally a
two-way term. Here u and v stand for the support
vectors. The additive terms except the two-way com-
ponent are composed of outer products. It is possi-
ble to construct a representation consisting only outer
products by using EMPR consecutively on the tar-
get function and then the two-way components. Af-
ter the first four term representation construction for
a chosen support vectors, EMPR is applied to the
two-way component by using different support vec-
tors which are constructed from the univariate vectors
of the first EMPR accordingly. Then a new EMPR is
applied on the newly constructed two-way array and
so on. Each step where four term EMPR is used to
construct new constant, univariate and two-way com-
ponents employs the existing components obtained

one step before. This method produces a represen-
tation whose core matrix between the orthogonal ma-
trices whose columns are left and right support vec-
tors is tridiagonal. Hence this recur sive construction
is called “Tridiagonal Matrix Enhanced Multivariance
Products Representation(TMEMPR) and has been de-
veloped by Demiralp and his group [14–17]. Compact
form of TMEMPR is as follows

A = UΣVT (2)

The columns of U and V matrices are support vectors
and Σ is a tridiagonal matrix consisting of contribu-
tions coming from outer products at each recursion
step. Although the structure of TMEMPR may seem
to be similar to Singular Value Decomposition (SVD),
TMEMPR differs with the feautere of being a recur-
sive method and the structure of Σ matrix which has
just main diagonal for the singular value decomposi-
tion.

In order to decompose multiway arrays via folded
matrices (folmats) defined by Demiralp [18, 19], a
brand new method called “Tridiagonal Folmat En-
hanced Multivariance Products Representation” is
constructed [20]. This paper focuses on TFEMPR and
organised as follows. Section 2 introduces folded ma-
trices. In section 3 we give a brief explanation about
TFEMPR especially for 3-way arrays. Numerical im-
plementations of the method is given in section 4 and
consequently the results are given in section 5.
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2 Folded Matrices (Folmats)
Vectors and matrices in ordinary linear algebra are
considered respectively as one-way and two-way ar-
rays in literature. Matrices have two space (row
and column space) and also have feature of mapping.
Folded matrices (Folmats) defined for making anal-
ogy between matrices and multiway arrays and adapt
the features of matrix to multiway arrays such as inner
product, norm, outer product etc. Folmat is shown as,

Ai1,i2,···,in;j1,j2,···,jn ≡ AGL;GR
(3)

where semicolon separates indices of multiway ar-
ray into two groups. Left side indices are correlated
to somehow row space and the right-side indices are
somehow correlated with the column space. We use
folmats to get rid of computational complexity of de-
composition of multiway arrays on each way. Semi-
colon enables binary decomposition by separating in-
dices into two groups.

3 Tridiagonal Folmat Enhanced Mul-
tivariance Products Representa-
tion (TFEMPR) for 3-Way Arrays

Tridiagonal Folmat Enhanced Multivariance Products
Representation (TFEMPR) which is one of the de-
composition methods for multiway arrays has the all
features of binary decompositions due to the usage
of folmat concept as given in section 2. TFEMPR
method can be considered as higher order analogues
of matrix decomposition. In this section we are going
to give details about the TFEMPR for 3-way arrays.

Now we will show the details of the method’s step
by step construction. First we will apply EMPR to a
folmat. We can write

AGL;GR
= a0UGL;V

T
GR; + a

(1)
GL;

VT
GR;

+ UGL;a
(2)
GR;

T
+ A

(1,2)
GL;GR

(4)

where AGL;GR
stands for a folmat and GL is called

as left grid which includes row space indices, GR is
called as right grid includes column space indices.
This representation consists of four terms respectively,
the constant term, the term towards left grid, the
term towards right grid and remainder term (A(1,2)

GL;GR
).

UGL; and VGR; are preselected support folded vec-
tors(folvec) respectively on left and right grid.

The first step of TFEMPR for 3-way arrays is
given explicitly as follows:

Aij;k = a0Uij;V
T
k; + a

(1)
ij; V

T
k;

+ Uij;a
(2)
k;

T
+ A

(1,2)
ij;k (5)

Herein the location of semicolon is important. Be-
cause left and right grids can be changed depending
on how to locate the semicolon. This is a flexibility
for the method. There is 3 situations given below for
3-way arrays.

Aij;k Ai;jk Aik;j (6)

Here we will take Aij;k into the consideration .
In (5) there are four components to be determined

a0, a(1)
ij; , a(2)

k; , A(1,2)
ij;k . It is necessary to provide the two

preconditions for determining the components. First
condition is the unit norm standardization and can be
given as follows for the left and right grid support
folvecs

UT
ij;Uij; =

I∑
i=1

J∑
j=1

u2i,j = 1 (7)

VT
k;Vk; =

K∑
k=1

v2k = 1 (8)

Support folded vectors should satisfy these unit norm
standardization. The second constraints on the com-
ponents are the vanishing conditions:

UT
ij;a

(1)
ij; = 0 (9)

a
(2)
k;

T
Vk; = 0 (10)

These conditions point out the orthogonality of sup-
port folvec and the relevant component through the
same grid. And also Uij; should be in the left null
space of A

(1,2)
ij;k and Vk; is in the right null space of

A
(1,2)
ij;k

UT
ij;A

(1,2)
ij;k = 0;k (11)

A
(1,2)
ij;k Vk; = 0ij; (12)

Under these conditions by multiplying (5) with
UT

ij;from left and with Vk; from right we obtain a0
as follows

a0 = UT
ij;Aij;kVk; (13)

In order to get a
(1)
ij; we multiply (5) with Vk; from

right
Aij;kVk; = a0Uij; + a

(1)
ij; (14)

a
(1)
ij; = Aij;kVk; − a0Uij; (15)

and combine (13) with (14) we obtain a
(1)
ij; .

a
(1)
ij; =

(
Iij;ij −Uij;U

T
ij;

)
Aij;kVk; (16)
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Here
(
Iij;ij −Uij;U

T
ij;

)
is a projection operator and

projects onto the complement of the space spanned by
Uij;.

In the same manner, if we multiply (5) with UT
ij;

from left,

UT
ij;Aij;k = a0V

T
k; + a

(2)
k;

T
(17)

and reorganise (17) as follows

a
(2)
k; = AT

ij;kUij; − a0Vk; (18)

then a
(2)
k; is obtained as

a
(2)
k; =

(
Ik;k −Vk;V

T
k;

)
AT

ij;kUij; (19)

Here
(
Ik;k −Vk;V

T
k;

)
is a matrix projecting onto the

complement of the space spanned byVk;.
Remainder term A

(1,2)
ij;k is obtained by extracting,

first three terms in (5) from target folmat.

A
(1,2)
ij;k = Aij;k − a0Uij;V

T
k;

− a
(1)
ij; V

T
k; −Uij;a

(2)
k;

T
(20)

By reorganising this equation compact form of A
(1,2)
ij;k

can be obtained as follows

A
(1,2)
ij;k =

(
Iij;ij−Uij;U

T
ij;

)
Aij;k

(
Ik;k−Vk;V

T
k;

)
(21)

Uij; is in the left null space and Vk; is in the right
null space of A

(1,2)
ij;k . This equality indicates that sup-

port folvecs generated from target folmat enter into
the null space of remainder term. In other words, rank
of A

(1,2)
ij;k decreases by 1.
So far we determined the components of the rep-

resentation (5). From now on operations to be taken
is for building recursive structure to give TFEMPR.

For simplicity, we define

α(1) = a0

β(1) = ‖a(1)
ij; ‖

γ(1) = ‖a(2)
k; ‖ (22)

and for begining recursion step

α(1) ≡ a0, Aij;k
(0) ≡ Aij;k,

Aij;k
(1) ≡ A

(1,2)
ij;k

u
(1)
GL;

= uGL; v
(1)
GR; = vGR; (23)

(5) is rewritten by using these definitions

Aij;k
(0) = α(1)Uij;

(1)V
(1)
k;

T

+ β(1)Uij;
(2)V

(1)
k;

T

+ γ(1)Uij;
(1)V

(2)
k;

T
+A

(1)
ij;k (24)

For each recursion step we need new support folvecs.
Because of this we define new support folvecs orthog-
onal to old ones as follows

u
(2)
ij; =

1

‖a(1)
ij; ‖

a
(1)
ij; v

(2)
k; =

1∥∥∥a(2)
k;

∥∥∥a
(2)
k; (25)

The goal of the recursion is to get rid of remainder
term. To this end on each step we apply EMPR to the
remainder term.

Recursive structure for jth step is:

Aij;k
(j) = α(j+1)Uij;

(j+1)V
(j+1)
k;

T

+ β(j+1)Uij;
(j+2)V

(j+1)
k;

T

+ γ(j+1)Uij;
(j+1)V

(j+2)
k;

T

+ A
(j+1)
ij;k (26)

The rank of remainder term decreases by 1 on each
step so the remainder term vanishes when one of its
null spaces becomes full rank. Then (26) turns out to
be the equality given below.

Aij;k =
∑
{i}∈GL

αiUij;
(j+1)V

(j+1)
k;

T

+
∑
{i}∈GL

βiUij;
(j+2)V

(j+1)
k;

T

+
∑
{i}∈GL

γiUij;
(j+1)V

(j+2)
k;

T

= Uij;ijΣij;kVk;k
T
, (27)

Here the entities of Uij;ij and Vk;k are orthonormal
folmats. Because the entities of these folmats are nor-
malized support folvecs and orthogonal to each other
we can write

Uij;ij ≡
[
U

(1)
ij; ... U

(m)
ij;

]
(28)

Vk;k ≡
[
V

(1)
k; ... V

(n)
k;

]
(29)

where the superscripts(m) and (n) over Uij;ij and
Vk;k respectively represents the sizes of the left and
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right grids respectively and have the values through
m = ij and n = k.

Σm;n consists of αs, βs and γs calculated at each
step of recursion. These parameters represent the
contribution of outer products. Under assumption of
m < n we can write

Σm;n=



α1 γ1 0 0 0 · · ·
β1 α2 γ2 0 0 · · ·
0 β2 α3 γ3 0 · · ·
0 0 β3 α4 γ4 · · ·
...

...
...

. . . . . . . . .
0 0 0 · · · βm−1 αm


(30)

By using α, β and γ parameters we can define quality
measurers at each recursion step to measure how good
the approximation is. Quality measurer definition is
given as follows for the kth step of the recursion

σk =
k∑

i=1

α2
i + β2i + γ2i
‖A‖

(31)

4 Numerical Implementations
In this section we will give implementations to test
the method for certain multiway arrays. In the im-
plemantations, tables contain α, β and γ parameters
calculated at each step and quality measurer.

There are two remarkable points in the implemen-
tations for this method. One of the those points is the
choice of Aij;k which is flexible for the method. We
give only results for the Aij;k type folmats. The other
point is the choice of support folvecs at the beginning
step. Here we use support folvecs whose all elements
are equal.

First implementation: For a given 4×4×4 mul-
tiway array as follow:

Aijk = ijk

i, j, k = 1, 2, 3, 4 (32)

We apply TFEMPR to this multiway array whose
structure is important due to the fact that it consists
of outer products. We expect to get exact result before
four recursion step. For this multiway array the results
are given in the below table:

Adm α β γ σ

i=1 125 82.92 55.90 0.95
i=2 37.08 0 0 1

Second implementation: The target multiway
array is in 5× 4× 5 type and given as

Aijk = sin(100i)3 cos(20(j + k))3

i, k = 1, 2, 3, 4, 5 j = 1, 2, 3, 4 (33)

Quality measurer of TFEMPR for this multiway array
gives exactly 1 at 5th recursion step.

Adm α β γ σ

i=1 -0.1509 0.1861 0.8155 0.0634
i=2 -1.5446 0.4794 0.5790 0.3224
i=3 -0.1761 0.8182 0.8281 0.4441
i=4 2.1859 0.0972 1.1033 0.9712
i=5 0.5731 0.0000 0.0000 1.0000

Third implementation: The purpose of this imple-
mentation is to test the different support folvecs in
TFEMPR. Multiway array (3 × 3 × 3 type) is given
as follows explicitly.

X (:, :,1) =

 1 2 3
4 5 6
7 8 9


X (:, :,2) =

 10 11 12
13 14 15
16 17 18


X (:, :,3) =

 19 20 21
22 23 24
25 26 27

 (34)

Here we choose normalised support folvec as having
elements which are all same (Unit support) as below:

Ui,j =
1

3

 1 1 1
1 1 1
1 1 1

 Vk =
1√
3

 1
1
1

 (35)

The other type support folvecs are obtained by direc-
tional averaging as follows :

Ui,j =
1√
1824

 10 11 12
13 14 15
16 17 18

 Vk =
1√
750

 5
14
23


(36)

For this implementation unit support folvec gives bet-
ter result than the average support. Quality measurers
for two support folvecs are located in the following
table

Step number Unit Support Average Support
i=1 1.0000 0.9946
i=2 1.0000 1.0000
i=3 1.0000 1.0000

Fourth implementation: In this implementation we
consider multiway array discussed in second im-
plemetation again but this time for 5× 5× 5

Xijk = sin(100i)3 cos(20(j + k))3

i, k = 1, 2, 3, 4, 5 (37)

In this implementation usage of average support gives
better than unit support folvec
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Step number Unit Support Average support
i = 1 0.0634 0.3097
i = 2 0.3224 0.4223
i = 3 0.4441 0.9654
i = 4 0.9712 1.0000
i = 5 1.0000 1.0000

5 Concluding Remarks
Concluding remarks has been itemized as follows:

• In this paper we have emphasized on TFEMPR
method for three way arrays. We have restricted
our implementations only for three way arrays
We intend to increase dimension of multiway ar-
rays in our future work implementations.

• TFEMPR method ends up with three factor
UΣVT . In literature there are analogues of this
decomposition and factorization method such as
commonly known method singular value decom-
position. Bench marking of these two methods
are left to the future works.

• The two flexibilities of this method are the choice
of support folvecs at the begining of the recursion
and how to choose left and right grids which we
mentioned in the implementations. Implemen-
tations were done on this issue but results did
not given here Since the determination how to
choose the left and right grids has not been gen-
eralized yet.

• In this paper we have only focused on synthetic
data. This method is implementable to problems
in many areas. We also applied TFEMPR to real
data sets obtained from videos. We left the re-
sults of video datas which are three way arrays
to the extended paper.
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