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Abstract: - Using the time-series of significant wave height and the peak period between 1979 and 2009, 
generated by SOWFIA - Streamlining of Ocean Wave Farm Impact Assessment, some relevant statistical 
information about energy content available in ocean waves in Cape-Verde is obtained.  The monthly and 
annual-average time-series of the average power are analysed and the confidence intervals for their values are 
defined. Considering all of the 31 years of data, the results show that the most energetic month, from the 
average power point of view is January (23.49 kW/m) and the least energetic month is July (15.04 kW/m). In 
fact, the monthly average power decays from January to July and increases from July to December (21.21 
kW/m). The annual-average power for the 31 years of data exhibits a weak attenuation caused by data 
aggregation. However, using the moving average smoothing curve it is possible to note that, between 1999 and 
2009, the values of annual-average power seem to stabilize around 18 kW/m. Using the appropriate 
Autoregressive Integrated Moving Average (ARIMA) model we verified that the future values of the annual-
average power tend to oscillate around the same level of average power (18 kW/m).The outliers present in 
time-series of annual average power were identified and their influence in the value of annual-average power 
was quantified. Removing outliers from the annual time-series of power caused a maximum relative attenuation 
in the values of the annual-average power between 1.85 and 13%. Through the Coefficient of Variation of 
Power (COVP), obtained by dividing the standard deviation of the power time-series by the average power, it is 
possible to conclude that the wave resource is stable, with COVP between 0.46 and 0.66. The values of the 
Monthly Variation Index (MVI), the maximum range of the monthly mean wave power relative to the yearly 
mean level, show that the resource is relatively stable, with MVI < 1.2. The present work calculates the deep 
water power available for the Natural Caves (NC) in Cape Verde Islands, through a rigorous analysis of the 
wave climate that excites them. The minimum sampling size and the corresponding numbers of days of 
measurements per month in order to quantifying the output power from NC are also estimated. The results 
show that the required number of days of measurements is lower in spring (March to May) and summer (June 
to August). This is due to the lower level dispersion of wave data for these seasons, in comparison with the rest 
of the months.  
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1 Introduction 
Ocean waves constitute one of the renewable 
sources of energy that are gradually entering the 
market of clean and sustainable energy worldwide. 
The global theoretical energy from ocean wave is 
estimated in 17500 TWh/year [1]. Many countries 
around world have been investing on this natural 
resource to produce useful and sustainable energy. 
Portugal (Pelamis and Pico Plant Projects), 
Australia (CETO and OCEANLIX projects), France 
(SEAREV project), UK (OYSTER WEC and 

Limpet projects) and Holland (AWS project) are 
examples of some countries that have recognized the 
feasibility of harvesting this source of energy [2]. 
According to the International Renewable Energy 
Agency [3], around 64 % of the Wave Energy 
Converters (WECs) has been projected for offshore 
application and 36% for near-shore and onshore 
operation. Some full-scale operational tests have 
been realized. These include the OYSTER device 
from Aquamarine Power, the Wave Roller from 
AW-Energy, Pelamis P2 from the Pelamis Wave 
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Power, the Seabased and the Sea-Tricity devices. 
Magagna (2011) [4] has identified, in 2011, over 
100 wave energy developers. Yet, EMEC (2014) [5] 
has listed 170 wave energy developers worldwide. 
About 45% of the wave energy developers are based 
in or are currently developing projects in the 
European Union (EU) regions. The global installed 
capacity of wave energy remains low and the 
technologies are still at an advanced R&D stage. 
Just a few machines have sustained long operational 
hours, such as the Aquamarine OYSTER (>20000 
hours) and Pelamis (cumulative > 10000 hours) [6]. 
The growth of the wave energy sector is lower than 
expected and this fact may affect the confidence of 
investors in this area. Success in attracting future 
Original Equipment Manufacturer investments will 
depend on the capacity of the developers in 
improving performance, reducing cost and 
validating wave energy technologies. The long-term 
global wave energy is expected to become cost 
competitive and provide an alternative to other 
Renewable Energy Sources and conventional energy 
resources. Through a review of the existing data 
available, the different cost components in the 
Capital Expenditure (CAPEX) estimate for wave 
energy extraction have been identified as follows 
(Table 1): 

 
Tabel 1 :Costs components estimate for wave energ 

extraction [7] 

 
Thus, the main components of CAPEX are 
mechanical equipment, civil and structural costs. In 
this context, the developers of wave energy 
technologies must undertake efforts and strategies 
aimed at reducing the two above mentioned costs 
and the risks associated with the operation of these 
equipments offshore or close to shore. 

 
 
 
 
 

1.1 Natural Caves 
Natural Caves (NC) are caverns formed naturally 
under the rocky shorelines, inside of which there is 
an air layer (Fig.1). This air layer acts like an air 
pump against the cave ceiling, as the wave enters 
and exits these natural infrastructures, forcing the 
compressed air to go in and out of the NC, through 
surface holes at the top of the cave. Fig. 2 shows NC 
with one and two holes.  

 

 
Fig.1. Activity in a Natural Cave. 

 

 
Fig 2. Activity in a Natural Cave with two holes. 

 
The principles of NC operations are similar to the 
man-made Oscillating Water Column (OWC) 
device, projected for onshore application.  
Justification for using the NC for wave energy 
conversion is a possible cost reduction on the Civil 
and Structural cost components, which, as 
mentioned before, are the most significant costs 
associated with building wave energy devices to 
produce electricity. Furthermore, the risk of the 
device collapsing is minimized, by taking advantage 
of the sturdiness of the natural rocky structure, time 
tested by the waves and storms.  
To evaluate the potential of NC for electricity 
production, it is necessary to estimate its output 
power. To do this, a set of experiments aimed at 
determining the values of some important physics 
parameters of NC operations need to be conducted. 

Civil and Structural costs  38% 

Mechanical Equipment costs  42% 

Electrical and I&C supply and installation 
costs  

8% 

Project indirect cost  7% 

Development cost  5% 
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Monteiro and Sarmento (2015) [8] carried out the 
analytical modelling of the NC operations as a 
function of their functioning physical parameters. 
The present study is part of a deeper work aimed at 
quantifying the output power of NC and to project 
an adequate power take-off system to be adapted on 
their holes, for energy extraction. 
Since the excitation waves are irregular, non-linear 
and non-stationary phenomenon it is very important 
to determine beforehand the sampling size, i.e. how 
long it takes to carry out the experiments (number of 
days of measurements) on a Natural Cave, in order 
to guarantee the time representativeness of its output 
power. To achieve this goal, some statistical 
analysis has to be carried on the wave energy input 
regime.   
 
 
2.2 Wave Energy in Cape-Verde: the state of 

the art 
Cape-Verde is an archipelago of ten islands in the 
Atlantic Ocean, off the West Coast of Africa, with 
roughly half million people. The country is totally 
dependent on oil to produce electricity, having one 
of the most expensive cost of electricity in Africa, 
around 0.28 Euro/kWh [9] versus 0.17 Euro/kWh 
[10] at Senegal, a continental neighbour. Some 
investments were made by the Government of Cape-
Verde aimed to introducing renewable sources of 
energy in the country, mainly solar and wind 
energy. The Renewable Energy Plan for Cape-Verde 
(ERPCV)  has defined an ambitious goal of  
achieving 50% of Renewable Energy penetration in 
the country by 2020 [11]. As a results of the 
ERPCV, there are in the country  four wind energy 
farms with a total annual production between 80 and 
110 GWh and two solar energy farms with 7.5 
MWp (MWp- Mega Watt Peak) [11]. In 1999, some 
research projects on ocean energy were initiated in 
the country, directed at Ocean Thermal Energy 
Conversion (OTEC) system and WaveStar 
technology (Wave energy). Unfortunately, these 
projects did not produced any visible results since 
they lacked a institutional framework on which to 
develop. 
Because of its insular nature, most of Cape-Verde’s 
economic activities (around 90%) are concentrated 
on coastal areas [12]. In this context, it makes sense 
to use wave energy for producing electricity locally. 
A clear alternative is harvesting the energy from 
ocean waves. The evaluation of the wave energy 
resources and the feasibility associated with its 
utilization in Cape-Verde need to be assessed in 
more detail. Before 2009, some pilot projects for 
wave energy conversion at south coast of Santiago 

Island were conceived but never implemented and 
worst yet, never went beyond pre-feasibility studies 
[13]. In 2009 an attempt was made to deploy the 
WaveStar device, developed by Danish company 
WaveStar Energy, at Sal Island. This project 
forecasted the wave energy resources in some 
regions around the Island, using measurements 
gathered by a wave buoy installed in place. 
Unfortunately, the project failed to achieve its goals 
and the buoy was abandoned at the Instituto de 
Meteorologia e Geofisica de Cabo-Verde, in Sal 
Island [13]. In 2011, GESTO Energy, a Portuguese 
company, carried out an evaluation of the wave 
resources in Cape-Verde based on eleven years of 
data produced by meteorological wave model 
worldwide. The data of direction, period and 
significant wave height were characterized and the 
values of these parameters were used for calculate 
the offshore annual average wave power [11]. 
According to this study, the islands that present the 
best potential for wave energy exploration are Sal, 
S. Antão, S. Vicente and Boa Vista. In fact, four 
projects for offshore wave energy conversion based 
on the Pelamis technology were proposed for these 
islands (GESTO, 2011): Sal (3.7 MW), S. Antão 
(3.7 MW), S.Vicente (3.7 MW) and Boavista 
(3.5MW). The study was commissioned by the 
Ministry of Turism, Industry and Energy of Cape-
Verde and, unfortunately, the scientific results of the 
study are unknown since it was never published in 
any scientific journal or conference proceedings.   
As there are no scientific data available on wave 
energy resources for Cape Verde Islands, the present 
work brings to light the real potential for wave 
energy harvesting and constitutes a significant 
contribution to authorities on which to base any 
decision about forthcoming investments on wave 
energy conversion. However, more detailed 
information will be needed in order to accurately 
validate the result of this study, as will be shown in 
next section.   
The characteristics of wave such as its slow and 
reciprocating motion, its high instantaneous power 
fluctuation level, the occurrence of extreme 
environment requires machines that absorbs high 
loads in multiple directions and  structures that 
withstand extreme loads in storms [14]. These 
characteristics of wave power forces the Wave 
Energy Converters (WEC) to be large and costly in 
comparison with their level of energy output. So, to 
prevent the high cost of WEC projects it is 
important to avoid their oversizing. In this context, 
the correct evaluation of the nature of the available 
power in waves is very important. The 
methodologies we propose in the present paper 
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consist in analyzing the nature of the time-series of 
power data to help us quantify more accurately the 
available power for conversion at WEC. In fact, the 
calculation of temporal representativeness of the 
wave power data to be used for evaluation of the 
energetic performance of a NC could be adapted for 
all WEC. The identification of outliers, observations 
that lie at an abnormal distance from others values 
in a random sample from a population, helps to 
avoid the oversizing of the WEC and therefore 
lowers the project cost. In fact, if the occurrence of 
this extreme event is insignificant the project of the 
power take-off system must be rethought.  The 
durability of the WEC is another aspect that bothers 
anyone interested in this area. The ANACONDA 
device is made using rubber tube that resist the 
extreme wave conditions [15]. The Natural Caves, 
described in the present work is meant, on one hand, 
to augment the durability of an OWC (Oscillating 
Water Column) WEC using the natural structures, 
tested by time and storms and, on the other hand, to 
diminish the civil cost associated with the OWC 
WEC. 
The procedures and software available for mapping 
wave energy resources ignore, in general, some 
important statistical aspects that can lead to errors in 
wave energy assessment. The outliers that may be 
present in the time-series of wave data, as a result of 
a specific event such as extreme storms, could 
significantly influence the available average wave 
power. Yet, as the experimental study carried out by 
Mendes and Monteiro (2007) [16] shows, some 
inshore WEC such as the OWC device, present 
serious handicaps when operating in high waves 
since these waves produce significant hydrodynamic 
loss associated with the interaction between waves 
and the caisson structure. Thus, the present study 
introduces a novelty by using adequate statistical 
tools to identify possible outliers in time-series of 
wave data, and the subsequent analyses of their 
influence in the annual-average power calculation. 
Another subject barely mentioned in papers, that can 
lead to error in the wave energy resources 
characterization are the effects of data aggregation.  
The information about the temporal behaviour of the 
wave data are lost due to the aggregation effects. 
The present study shows that the aggregation effects 
may be a real problem that deserves to be taken into 
account when characterizing wave energy resources. 
Finally, based on the wave regime characteristics, 
this paper calculates the time duration necessary to 
carry on the experiments at Natural Caves aimed to 
quantify their output power with a minimum sample 
size that will guarantee its time representativeness. 
The estimation of the time duration is very 

important as it helps evaluate correctly the energetic 
performance of NC. In fact, the statistical procedure 
presented in this paper for quantifying the time 
duration can be followed by other researchers to 
better understand the behaviour of their models of 
wave energy devices. 

 
 

2 Data 
Knowledge of wave energy resource at a certain 
location is required by developers of Wave Energy 
Converters projects in order to allow them to select 
the most favourable sites for achieving optimal 
power capture and economic performance from their 
devices. Three main categories of data are available 
for wave energy resources assessment: In-situ 
measurements (buoy, pressure transducers, wave 
staff, ship-borne wave recorders), remote sensing 
(satellite radar Altimetry RA, Synthetic Aperture 
Radar SAR, Marine Wave Radar), numerical 
models for deep-water (WAM and WaveWatch 3) 
and for shallow-water (SWAN, TOMAWAC and 
MIKE21).    
SOWFIA-Streamlining of Ocean Wave Farm 
Impact Assessment is an EU Intelligent Energy 
Europe Project with the goal of sharing and 
consolidating pan-European experience and best 
practices for consenting processes and 
environmental and socio-economic impact 
assessment (IA) for offshore wave energy 
conversion developments [17]. This project brings 
together ten partners across eight EU Member States 
actively involved in planned wave farm test centres 
and aims at providing recommendations for 
streamlining of IA approval processes with the 
purpose of removing legal, environmental and 
socio-economic barriers associated with 
development of the wave energy farms. The 
SOWFIA project uses data obtained from direct 
measurements (wave buoy) of the wave climate, 
carried out at the seven European wave energy test 
centres, through the Data Management Platform 
(DMP) tool. DMP is an interactive tool designed to 
assist in the decision making process, providing 
information on different wave energy monitoring 
activities at different test centres and allowing direct 
visualization and downloading of relevant data. The 
DMP is publically available on the SOWFIA 
website. The seven European test centres involved 
in the SOWFIA project are the AMETS (Ireland), 
BIMEP (Spain), Lysekil (Sweden), Ocean Plug 
(Portugal), SEAREV (France), Wave Hub (United 
Kingdom) and EMEC (Scotland) [17]. 
For others regions of the ocean, where there are no 
in situ data measurements, the SOWFIA project 
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uses data produced by WaveWatch 3 (WW3) wave 
model. The WW3 is phase-average model that 
solves the spectral action density balance equation 
for wavenumber-direction spectra. The Governing 
equation includes refraction due to the temporal and 
spatial variation of the mean water depth and 
current. The source terms include nonlinear 
interactions, dissipation due to the white capping, 
bottom friction, wind wave growth and decay [18]. 
An important constraint of the formulation of the 
WW3 is that the parameterizations of the physical 
process included in the model do not address 
conditions where the waves are strongly depth-
limited. This constraint implies that the model is 
generally applied on spatial scales between 20 and 
100 km outside of surf zone (Tolman, 1999). 
Like other sources of renewable energy, the nature 
of ocean waves is complex and impossible to be 
predicted precisely. The data produced by WW3 
model must be, wherever possible, calibrated with 
in situ measurements using wave buoy or altimeter 
data. Both calibrations of the wave data and the 
estimation of the confidence bounds are made 
difficult by the complex structure of errors in the 
model data. Error in parameters from wave model 
show nonlinear dependence of variety of factors, 
seasonal and inter-annual changes in bias and short-
term temporal correlation [19]. To assess the 
uncertainty associated with the estimation of energy 
yield from a wave energy converter (WEC), Mackay 
et al (2010) use two hindcasts from European 
Marine Energy Centre in Orkney. These hindcasts 
are produced by WAM [20] and WW3 wave models 
and calibrated using a Datawell Directional 
Waverider buoy moored in 50 m water depth at the 
EMEC site. The study show that before wave data 
calibration, the estimation of the long-term mean 
WEC power from the two hindcasts differ by around 
20%. After calibration this difference is reduced to 
5%.   
Data produced by WW3 through the SOWFIA 
project is used to evaluate the wave energy 
resources at Cape-Verde. The data was gathered for 
period between 1979 and 2009, at coordinates 16ºN-
24ºW, approximately at centre of the archipelago, 
where the water depth is around 3.7 km [21]. The 
WW3 produced information about the significant 
wave height (Hs ), peak period (Tp), peak direction 
(Dp) and wind velocity, every 3 hours. The data 
generated by a wave model, should have been 
calibrated against data collected in situ, but 
unfortunately, there is no in-situ calibration buoy in 
the region. Another factor which introduces some 
inaccuracy in the data, is the shadow effect caused 
by the own presence of the islands. According to 

Ponce de Léon et al. (2010) [22] the shadow effect 
is not taken into account in wave models and can 
introduce inaccuracy in wave data, especially at the 
location where the wave regime is characterized by 
low values of Hs.  Another important aspect that 
deserves mentioning is the location of the Natural 
Caves (inshore) relative to the location of the data 
acquisition (offshore). Further study on the wave 
transformation from deep to shallow water must be 
carried out using information about the local 
bathymetry. Unfortunately, detailed bathymetric 
data is only available for some bays and harbours. 
Therefore, further approximations of coastal 
bathymetry must be made in order to obtain a more 
realistic result of wave energy resources available at 
shorelines regions. 
 
 

3 Methodology 
Calculation of the wave energy input regime is 
carried out using principles and parameters 
described below.   
 
 
3.1 Average Power 
In deep water, where the depth is greater than a half 
of the wavelength, the average wave power can be 
determined through the following equation, applied 
only for unidirectional wave spectrum 
approximation. 
 

P= ρg2Hs
2

64π
                                                                   (1) 

 
Where Hs is significant wave height, Te is energy 
period, defined in terms of the spectral momentum 
by the following relations: 
 

Hs=4m0

1
2⁄
                                                                (2) 

Te=
m-1

m0
= ∫ ∫ f-1Sሺfሻdfdθ∞

0
2π

0∫ ∫ Sሺfሻdfdθ∞
0

2π
0

                                           (3) 

 
in which, m-1 is the spectral moment of order -1, m0 

is the spectral moment of order 0, f  is the 
frequency, Sሺfሻ  is the spectral density function and  
θ is the direction of the energy propagation [23]. 
The characterization of the wave climate is made by 
the combination of the significant wave height Hs 
and peak period Tp or the zero-crossing period Tz 
parameters. The energy period determined by the 
Eq.(3) require the knowledge of the form of energy 
spectrum. When the form of the energy spectrum is 
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unknown it can be approximated by any of the many 
model available [23]. This is the approximation used 
for the Marine Atlas of Renewable Resources in UK 
[2].   Another approximation commonly used for  
is represented by Te≈αTp, where α is an empirical 
parameter. The approximation Te=Tp used to 
evaluate the wave resource for Cape-Verde was 
considered, by Hagernam (2001) [24], very 
appropriate to make a preliminary analysis of wave 
energy resource. Using the monthly series of the 
available power in waves it is possible to define the 
annual time-series of this parameter through the 
following expressions: 
 

Paj=
∑ Pij

initial month+11
i=initial month

12
                                                   (4) 

 
In the above equation Paj is the average power for 
year j, Pij is the average power for the month and 
year. In this way, the monthly time-series begin on 
January and ends on December of each year. 
It is important to note that there is no physical 
justification for wave power to be monthly periodic, 
but since the sun-cycle is the underlying cause for 
atmospheric pressure distribution and wind patterns 
over the ocean, most likely it will be yearly 
periodic. 
The reason to calculate monthly series of available 
power is just related to how data is collected and 
made available at SOWFIA. 
 
 
3.2 Monthly Variation Index (MVI) 
The temporal variability of the wave resources is a 
key factor that affects decisively the feasibility of 
wave energy projects. In this sense, the regions of 
the ocean where the resources are stable are more 
attractive for any possible investors. Naturally, the 
level of the average power is another important 
factor for viability of wave energy harvesting.  The 
Monthly Variation Index is defined as the ratio of 
the differences between the maximum and minimum 
values of the monthly average wave power in year j 
by the corresponding annual average wave power 
[25]. That is,  
 

MVIj=
(Pmax-Pmin)j

Paj
                                                    (5) 

 
where Pmax and Pmin  are, respectively, the 
maximum and minimum values of the monthly 
average power in year j. 
 
 

3.3 Coefficient of Variation of Power 

(COVP) 
COVP is another very important parameter used to 
evaluate the temporal variability of wave resources. 
This quantity is defined by the ratio between the 
standard deviation of the wave power and the 
respective annual average wave power in year j [25] 
. 

COVPj=
σ(Pሺtሻ)j

Paj
                                                       (6) 

 
In the Eq.(6), Pሺtሻ is the values of power evaluated 
each 3h, represent the standard deviation of 
temporal series of wave power, Pሺtሻ, for year j , and  
Paj is the respective annual average wave power. 
According to Cornett (2008) [25], small values of 
COVP mean that the wave resources are stable. For 
0.8<COVP<0.9 the wave resources can be 
considered moderately instable. Therefore, for 
COVP>0.9 the resource is unstable. 
 
 
3.4 Statistical analysis  
The wave climate at a certain location is well 
characterized by the time-series of significant wave 
height and the peak period, which are recorded 
every 3 hour (time interval necessary for verifying 
significant change in wave spectrum). Using these 
parameters, other statistics such as the average 
available power in waves can be calculated. To 
understand the time-series behaviour of some 
important wave parameters, to calculate the 
confidence interval, the smoothing curves, and the 
forecast of its values, some statistical tools of 
analysis are used. In this context, some well known 
statistics software such as R software [26], gretl 
software [27], XLSTAT [28] and Minitab [29] are 
used. Aspects such as the trend analysis, stationarity 
and normality tests of the average power are here 
analysed. To perform the forecast of the average 
power in waves, the Autoregressive Integrated 
Moving Average (ARIMA) model is used. Non-
seasonal ARIMA model is generally represented as 
ARIMA (p,d,q) where, p is the order of the 
Autoregressive Model, d is the degree of 
differencing and q is the order of the Moving 
Average Model [30]. 
Finally, the most commom sea-states in Cape-Verde 
can be shown through the wave histogram.  The 
wave histogram is a table that lists the occurrence of 
the sea-states in terms of significant wave height 
and peak period or mean up-crossing period. It is the 
long-term statistical representation of sea states. 
Using the information in the wave histogram it is 
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possible to identify the most common sea states in a 
certain region. 
 
 
3.5 Representativeness of the monthly 

average output power from the NC 
The energy that excites the NC is a function of the 
local wave regime, while its output energy depends 
on the input energy (wave regime) and on the 
geometry of the NCs (Fig. 3). For each Natural 
Cave the geometry is fixed, hence the output energy 
is directly determined by the local wave regime. 
This mean that the variation in the output energy 
content is caused by the variation in the input 
energy content, that is by the variation of the local 
wave regime. In this context, it is reasonable to 
assume that the minimum sampling size necessary 
for characterizing the input energy content is equal 
to the minimum sampling size needed to 
characterize the output energy from the NC. The 
calculation of the minimum sampling size for 
characterizing the input energy into the cave is done 
using the Minitab Software. For three  hours time 
interval between successive readings, the total 
number of data points acquired during one day is 
eight. So, if this minimum sampling size is 
represented by Nin, the correspondent minimum 
time duration for data acquisition to achieve the 
representativeness of the input power is Nin/8 days. 
Therefore, to guarantee the representativeness of the 
output energy from the NC the duration necessary to 
realize the experimental study on these natural 
infrastructure is equal to Nin/8 days. 
 

 
Fig. 3. Energy production system by NC. 

 
 

4 Results  
Table 2 (appendix) shows the histogram of wave 
regime, where 78.03 % of the waves have 
significant wave height of 1-2 m and 20.81% of all 
occurrences feature peak period from 6-9 s and 
significant wave height from 1.5-2 m. The minimum 
and maximum values of significant wave height and 
peak period recorded are, respectively 0.59 m and 

3.82 m and 2.85s and 22.12 s. Yet, the histogram 
presented in Table 2 shows two local maxima for 
the peak period 6 to 9s and 12 to 15s, for significant 
wave height between 1.5 and 2.5 m. This bimodal 
distribution indicates a superposition of two distinct 
wave regimes.  According to Holthuijen (2007) [31 
], the spectrum at a prediction point is the 
superposition of waves from all directions, 
accounting for all processes of generation. The wave 
regime can be classified into wind-sea and swell, the 
latter when the peak period waves have phase 
velocity higher than the wind speed and are capable 
of propagating outside the generating area. Analysis 
of wind-sea and swell fields for mid-latitude and 
tropical Atlantic for the period 2002–2008 using a 
combination of satellite data (altimeter significant 
wave height and scatterometer surface winds) and 
model results (spectrum peak wave period and 
propagation direction) done by Farias, et al. (2012) 
[32], shows a dominance of swell over wind-sea 
regimes throughout the year in the Atlantic. Fig.4 
shows the wave rose diagram obtained for these two 
wave regimes. The first diagram (A) represents the 
predominant direction for peak periods between 6s 
and 9s. These waves are generated by the 
predominant winds, blowing constantly throughout 
the year, from NNE direction. Since there is not 
enough fetch length between Cape-Verde Islands 
and the African continent (600 Km), the wave 
regime do not fully develop and remains with a peak 
period between 6 and 9 seconds. 
 

 
Fig. 4A Wave rose for local maxima characterized by 

the peaks periods between 6 and 9 s.   
 
 

Wilsnon Monteiro et al.
International Journal of Renewable Energy Sources 

http://www.iaras.org/iaras/journals/ijres

ISSN: 2367-9123 7 Volume 2, 2017



The second diagram (B) represents the predominant 
direction for peak periods between 12s and 15s and 
shows a superposition of waves from two origins:  

 NNW waves which are generated during 

early-year winter storms in the North-

Atlantic. 

 SSW waves which are in turn generated 

during the end-year autumn storms in the 

South-Atlantic. 

 
Fig. 4B. Wave rose for local maxima characterized by 

the peaks periods between 12 and 15 s. 
 
Both regions have sufficient fetch length to fully 
develop the wave regime, and there are outliers of 
17s – 18s generated in South-Atlantic. 
 This is consistent with later findings in this paper 
that January and December are the most energetic 
months and July is the least energetic month. 
 
 
4.1 Seasonality and trends 
The curves on Fig. 5 show no clear trend on the 
time-series of the monthly average power, over the 
years. This fact is confirmed by the Mann-Kendal 
test [33] whose results are presented at Table 3 
(appendix). The Mann-Kendal test (at 5% level of 
significance) was done using commercially 
available software [28]. The results show that these 
monthly time-series can be considered trendless 
over the years, except for September and October 
with low p-values of 3.8% (September) and 1.8% 
(October). However, these trends may be the results 
of data aggregation error that will be reported in 
more detail later in this work.  

 

 
Fig.5 Time-series of monthly average power. 

 
Fig. 6 shows the minimum, average and maximum 
power available on waves which has been calculated 
for each month of the 31 year long record. The 
graph clearly shows that the most energetic month is 
January (23.49 kW/m) and the least energetic month 
is July (15.04 kW/m). In fact, the average power 
decays from January to July and increases from July 
to December (21.21 kW/m). The curves show, as 
may be expected, winter power exceeding summer 
power as is the case region off the north coast of 
Scotland [19].  
 

 
Fig. 6 Statistics of monthly average power for 31 

years of data. 
 
Fig.7 shows the annual-average values of significant 
wave height (Hsav) and peak period (Tpav), 
together with their moving average smoothing cuves 
(MASC) of seven periods [34]. According to this 
figure, the maximum and minimum annual-average 
values of the significant wave height are equal to 
1.83 m and 1.61 m, recorded, respectively, in the 
years 1986 and 1997/2005. After 1990, the annual-
average values of the significant wave height shows 
a rapid decay until 1998, after which it shows a 
quasi-constant behavior around 1.68 m, until 2009. 
The annual-average values of the peak period has its 
maximum value of 11.00 s in 1997 and  minimum 
of 9.91 s, in 2007. In general, the values of this 
parameter show a downwards trend over the years. 
However, due to the high variation of the power 
between 1994 and 1997 the smoothing curve shows 
a upward trend during this interval of time. After 
2002 it shows a quasi-constant behaviour, around 
10.5 s.  
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Fig. 7 Annual-average values of significant wave 

height and peak period. 
 

The annual-average values of power available in 
waves, Eq.(1), are shown in Fig.8. The maximum 
and minimum values of this parameter are 21.04 
kW/m and 15.94kW/m attained, respectively, in 
1982 and 2005.  The annual-average values of 
power show a downward trend until 1998, after 
which it exhibits a quasi-constant behavior around 
18 kW/m, until 2009.  
 

 
Fig. 8 Time-Series of annual-average power. 

 
For a more in depth analysis of the trend of the 
annual-average power time-series the Augmented 
Dickey-Fuller (ADF) trend test was used. As the 
Fig.8 shows, the time-series of the annual-average 
power shows an initial downward trend and a 
constant, as its values oscillate around a nonzero 
constant. Thus, in the ADF trend test we assume 
that the power is the sum of a constant and a trend. 
Another aspect associated with the utilization of the 
ADF test is the calculation of the optimum Lag 
length. To do this, the calculation of the maximum 
Lag length (Lagmax) is necessary. This can be done 

using the equation Lagmax=int {12ሺT/100ሻ1
4⁄ },  

suggested by Schwert (1989) [35].  In this equation, 
“int” means that we must accept the integer parts of 
the results produced by the equation and T is the 
dimension of sample. For our case study, T=31 (for 
annual-average time-series) observations and, 
therefore, the Lagmax=9 Using the function “Var 
Lag” in gretl software, it is possible to calculate, 

automatically, the optimal Lag length, according to 
Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC) and Hannan-Quinn 
Information Criterion (HQC) [36]. The results 
produced by this procedure are presented in the 
following Table. 
In Table 4 (appendix), “*” means the best Lag 
length. Thus, the optimum Lag length is, then, 
Lag=1, according to all the criteria mentioned 
before.  Using the gretl software for this optimal 
value of the Lag length and for the assumptions that 
the power is the sum of a constant and trend, as 
mentioned before, the ADF trend test produces a 
p-value=0.0001very low , in comparison with  the 
level of significance (α=0.05) used to perform the 
test. Therefore, the null hypotheses of non-
stationarity must be rejected. Thus, the time-series is 
stationary around a deterministic trend. That is, the 
annual-average time-series of power is a trend-
stationary process [37]. This kind of trends is caused 
by a moving average component that is an explicit 
function of time. To better understand the nature of 
the trend, exhibit by the values of annual-average 
power, it would be worth to carry on the trend test 
of the original time-series of power. Fig.9 shows the 
original time-series of power, between 1979 and 
2009 calculated for each 3h. Analyzing this figure 
becomes clear that the values of the power oscillate 
around a constant different from zero and there is no 
clear evidence of trend in the value of the referred 
parameter.  
 

 
Fig. 9 The original time-series of power, between 

1979 and 2009. 
 

The optimum Lag length is calculated and is equal 
to Lag = 21 (AIC), Lag = 7 BIC and Lag = 9 
(HQC). These different results for optimum Lag-
length could be associated with the heterogeneity of 
our data. The ADF test was carried out for all three 
Lag lengths and all of them produced a rejection of 
null hypothesis of non-stationarity. So, the original 
time-series of power is stationary around a constant 
mean. These results lead us to conclude that the 
initial trend shown in the values of the annual-
average time-series of power could have been 
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caused by two factors: the effects of aggregation 
[38] and the existence of the Outliers, defined as an 
observation in data set which appears to be 
inconsistent with remainder of that set of data 
[39].These outliers could affect significantly the 
mean values of power.  According to Clark et al. 
(1976) [38], aggregation problem can be defined as 
the information loss which occurs in the substitution 
of aggregate, or macro-level, data for individual, or 
micro-level, data. This undesirable effect reduces 
the variability of data. In fact, aggregating the 
values of the power into its annual-average values 
produce, in our case, a reduction of standard 
deviation parameter from 10.39 kW/m, in original 
time-series, to 1.29 kW/m, in annual-average time-
series. This corresponding to a dramatic reduction of 
87.5% of standard deviation in comparison with the 
value of this quantity for the original time-series, 
and it could introduce a high level of error 
associated with the aggregation effects. 
Defining a set of samples using all values of the 
significant wave height, peak period and the average 
power obtained for each month during the 31 years 
of data, the confidence intervals for all of these 
parameters were calculated, using the Minitab 
software and admitting a significance level of 5%. 
Before defining the referred confidence intervals the 
normality tests for all of these parameters were 
performed. Table 6 summarizes the statistical 
information about the normality tests, average 
values and confidence intervals for each month. The 
values of the A-squared parameter shows that the 
data is non-normal [40]. According to D’Agostino 
(1986) [40], the cricital value of the  A-squared 
parameter, for  a 95% confidence level, is 0.752. 
The values of this parameter presented in Table 6 
(appendix) are higher than this critical value. So, 
there is a very strong evidency that the data is non-
normal. This result is confirmed by the p-values that 
are, in all cases, lower than 0.05 (significance level) 
implying the rejection of the normality hypothesis. 
The Minitab software has an option to calculate the  
confidence intervals for non-normal data. The 
results are presented in Table 6 (appendix). 
 
 
4.2 Outliers 
To analyze the implications of the outliers in our 
results, they were identified, through the 
Tukeys’method (Boxplot) [41], using, for the 
present study, the R software, and subsequently 
removed from the time-series. For identifying the 
outliers, this method uses the concept of the 
interquartile range to extract the very large and the 
very small values present in data set. The numbers 

of the outliers found, in this way, for each year of 
the time-series, are presented in Table 5 (appendix). 
 As we mentioned before, all outliers are removed 
from the original time-series of annual average 
power. Further, the time-series of the annual-
average power is, then, calculated, and the results 
are plotted in Fig.10, together with the 
correspondent annual-average power including 
outliers. As the referred figure shows, the trend-
stationarity process persists even when removing the 
outliers. That is, the trend is not caused by the 
influence of outliers. But, they introduce a slight 
relative variation, between 1.85% and 13% in the 
values of annual-average power. However, at times 
of extreme stroms, severe outliers may appear.  In 
this context, it is worth  analyzing the influence of 
these severe outliers in the context of wave energy 
resource characterization. Now, it is clear that the 
trend of the annual-average power is a result of data 
aggregation. 
 
 

 
Fig. 10 The time-series of annual-average power, with 

and without outliers. 
 

4.3 Projection  
To estimate the future behavoir of the values of the 
annual-average power a forecast for the next 10 
years is performed. For this purpose, it is necessary 
to calculate the best ARIMA model.  
According to the ADF trend test, the time-series of 
the annual-average power is trend-stationary. The 
first difference (P-1) is stationary as it is possible to 
see through the values of the Autocorrelation Factor 
(ACF) and of Partial Autocorrelation Factor (PACF) 
presented in Fig.11, generated by gretl software. In 
fact, as shown in Fig. 11, the values of these 
parameters are statistically equal to zero, as they are 
less than 0.35, after Lag = 1 (for ACF) and Lag = 2 
(for PACF). ACF and PACF are two statistical 
measures that show how the observations in a time-
series are related to each other. Thus, to determine a 
proper model for a given time-series, it is necessary 
to carry out the analysis of these parameters [42]. In 
the present case, the original time-series is 
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converted into stationary time-series after the first 
differencing (d = 1).  

 
Fig. 11 The values of ACF and PACF parameters for 

the annual-average power time-seires. 
 
Accornding to Hintze (2007) [43] the value of p is 
determined from the PACF of the appropriate 
differenced time-series. If the PACF cuts off after a 
few Lags, the last Lag with a large value would be 
the estimate for p. Therefore, p is equal to 2 
(Fig.11). The value of q is estimated,  following the 
same procedure, using the values of the ACF 
parameter shown in Fig.11. So, q=1 and, the best 
ARIMA model to make the forecast is ARIMA (2, 
1, 1).  However, using the R software it is possible 
to generate automatically, the best ARIMA model to 
make a forecast of a time-series. For our annual-
average power time-series the R software produce 
the ARIMA (2,1,0). According to AIC and HQC 
criteria the ARIMA model generated by R software 
is better than ARIMA (2,1,1). In fact, the ARIMA 
(2,1,0) led to the lower values of AIC (103.78) and 
HQC (105.57) in comparision to which presented by 
ARIMA (2,1,1) that were, respectively, 104.83 for 
AIC and 107.07 for HQC.  Thus, in the present 
study, the forecast was made using the best ARIMA 
model, that is the ARIMA (2,1,0). 
Fig.12 shows the results of the forecast for the 
annual-average power, achieved using the gretl 
software. As Fig.12 shows, the predicted time-series 
follows the observed time-series and produced a 
residual values that oscillate around zero (Fig.13), 
which shows that the  predicted values tend to adjust 
to the observed values. According to the forecast, 
the predicted time-series of the annual-average 
power seems to oscillates, without any trend, around 
of 18 kW/m, as was previousely predicted using the 
moving average smoothing curve. This value is very 
close to the one calculated by Falnes. J. (2007) [44] 
, for tropical regions, similar to Cape-Verde Island. 
However, the uncertainty about the forecast is high. 
The Confidence interval spans a wide range of 
annual-average power. 
 

 
Fig.12 Forecast of annual-average power (generated 

by gretl software). 
 

 
Fig.13 Residual values of the forecasted annual-

average power time-series (generated by gretl software). 
 
The normality test of Anderson-Darling [45] shows 
that the annual-average power follows a normal 
distribution with p-value equal to 51.5% (Fig. 14). 
As this p-value is higher than the significance level 
of 5%, the hypothesis of the normality distribution 
is accepted. Fig.14 was generated by Minitab 
software and represents a summary report of the 
annual-average power time-series. It shows, with a 
significance level equal to 0.05, the confidence 
intervals for the annual mean (17.981 kW/m – 
18.924 kW/m), for the annual median (17.879 
kW/m – 19.186 kW/m) and for the annual Standard 
Deviation (1.028 kW/m – 1.719 kW/m). Fig. 15 
shows the normal probability plot for the annual-
average power. As it is possible to note in this 
figure, in general, the data follow the normal line. 
However, some deviation from this normal line is 
registed between 16.99 kW/m and 17.09 kW/m.   
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Fig. 14 Summary report of annual-average power, 

between 1979 and 2009. 
 

 
Fig. 15 Normal probability plot. 

 

 

4.4 Stability 
The wave energy resources in Cape-Verde are stable 
with COVP less than 0.8, as it is possible to see in 
Fig. 16-A, which represents the time-series of the 
annual values of COVP. The MVI parameter shows 
that the monthly wave energy resources can be 
considered relatively stable with MVI values less 
than 1.2 (Fig. 16-B). This is a very attractive aspect 
associated with the utilization of wave energy to 
produce electricity in Cape-Verde, since it affects 
the useful life cycle of ocean wave conversion 
equipment. 

 

 

(A) 

 
(B) 

Fig. 16. Temporal variability of wave resources. A – 
Coefficient of Variation of Power; B – Monthly Variation 

Index. 
 
 
4.5 Representativeness of the output power 

from NC 
The energy from NC is a time-varying quantity. 
Thus, to estimate this parameter it is necessary to 
achieve the minimum sampling dimension to 
guarantee its temporal representativeness. As the 
wave regime is the only parameter that causes the 
variation in the energy content produced by NC, we 
assume that the minimum sampling size necessary 
to characterize the monthly average power on waves 
is equal to the minimum sampling size to 
characterize the monthly average power emanating 
from the NC. Further, this minimum sampling 
dimension is converted in numbers of days for 
monitoring the NC in order to achieve the temporal 
representativeness of the power data. In this way, 
using the Minitab software, the minimum number of 
sample points, for average monthly power, was 
calculated admitting a 0.85 power factor, a 
significance level equal to 0.05 and a value of 
3kW/m for margin of error. This margin of error 
was assumed taking into account the possibility to 
completing all measurements in one year. In this 
context, lower margin of error implies higher 
number of sample points. Table 7 (appendix) show 
the standard deviations, the minimum sampling size 
to guarantee the representativeness of the values of 
the monthly average power and, consequently, the 
number of days to carry out the experiments on the 
NC in order to ensure the correct values of the 
average power extracted from these natural 
infrastructures. It is important to note that during the 
spring (March to May) and summer (June to 
August) the minimum numbers of days of 
measurements are lowers in comparison with the 
rest of the months. The reason for this finding is 
associated with the nature of the wave data for the 
referred months. That is, during the spring and 
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summer the wave data present low dispersion as it is 
possible to see through the values of the standard 
deviation in Table 7 (appendix), indicating that the 
wave energy resources are most stable during these 
periods of the year. Therefore, the minimum sample 
size for characterizing these wave data is lower than 
the rest of the months for which the standard 
deviations are higher.    

 
Table 7 :Minimum sampling size and the corresponding 

numbers of days of measurements 

Power Factor: 0.85; Margin of Error: 3 kW/m;  

Significance level: α = 0.05 

Mon

ths 

Standar

d 

deviation

, σ 

Minimum 

sampling 

size, n 

Numbers of 

days (for 3 h 

time step) 

J 13.25 178 23 

F 11.01 123 16 

M 8.63 77 10 

A 7.01 51 7 

M 7.25 55 7 

J 6.65 47 6 

J 7.46 58 8 

A 7.99 66 9 

S 9.98 102 13 

O 10.80 119 15 

N 12.78 165 21 

D 13.78 192 24 

 
 

5 Conclusion 
The most common sea state in Cape-Verde occurs 
20.81% of time, featuring peak periods from 6-9 s 
and significant wave height from 1.5-2 m. For 
period between 1979 and 2009, 78.03% of the 
waves present wave height between 1 and 2 m.  
January and December are the most energetic 
months and July is the least energetic month. The 
monthly wave power decreases from January to July 
and increases again to December. 
Through the Coefficient of Variation of Power 
(COVP) it is possible to conclude that the wave 
resource is stable, with COVP between 0.46 and 
0.66.  

The MVI parameter shows that the wave resource 
can be considered relatively stable (MVI <1.2) from 
monthly average power point of view.  
The time-series of annual-average wave power 
shows some attenuation over the years, due to the 
occurrence of effect of aggregation. However, using 
the smoothing moving average curve it is possible to 
verify that, from 1999, annual-average wave power 
oscillate around of 18kW/m.   
This trend is continued in 10 years projected annual-
average future values.  
The outliers, present in time-series of annual-
average power were identified and their influence in 
the value of annual-average power was quantified. 
Removing outliers from the annual time-series of 
power caused a maximum relative attenuation in the 
values of the annual-average power between 1.85 
and 13%. 
The minimum recording time of physical parameters 
associated with the NC operation are determined, 
for each month, under the assumption that the 
minimum sampling size necessary to characterize 
the monthly average power on waves is equal to the 
minimum sampling size to characterize the monthly 
average power emanating from the NC. In this 
context and for the Cape-Verde Wave Regime, the 
minimum sampling size and the corresponding 
numbers of days of measurements are given in 
Table 7. During the spring and summer the wave 
resources are more stable than the rest of the year 
and, therefore, the minimum numbers of day for 
monitoring the NC are lower, in comparison with 
the rest of period of time. 
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Appendix 
 

Table 2: Histogram 
 

  Peak Period, Tp[s]   
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 H
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[m
] 

0-0.5 0 0 0 0 0 0 0 0 0 0.00 

0.5-1 1 3 170 427 141 29 6 0 777 0.86 

1-1.5 0 572 8307 9194 7288 1742 127 4 27234 30.07 

1.5-2 0 730 18854 7590 12783 3315 171 2 43445 47.96 

2-2.5 0 20 8482 2072 3329 1355 85 0 15343 16.94 

2.5-3 0 0 1657 731 431 293 25 0 3137 3.46 

3-3.5 0 0 254 219 51 47 7 0 578 0.64 

3.5-4 0 0 28 29 3 8 1 0 69 0.08 

>4  0 0 0 0 0 0 0 0 0 0.00 
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nce of 
Tp 

1 1325 37752 20262 24026 6789 422 6 90583 
100 

 %Occu
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of Tp 

0.00 1.46 41.68 22.37 26.52 7.49 0.47 0.01 100 
 

 

Table 3: The Mann-Kendall Trend test for monthly average time-series. 
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Tabel 4 : Energy use by suburb The AIC, BIC and HQC values as a function of Lag length, for annual-average power time-
series. 

 

Lags 1 2 3 4 5 6 7 8 9 

AIC 3.23* 3.27 3.29 3.33 3.42 3.48 3.41 3.50 3.49 

BIC 3.38* 3.47 3.54 3.63 3.76 3.88 3.86 3.99 4.03 

HQC 3.27* 3.32 3.35 3.40 3.50 3.57 3.51 3.62 3.62 

 

Tabel 5: Numbers of outliers present in each annual time-series of power. 
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Tabel 6: Monthly statistical reports Energy. 

 

 Variable 
Simple 

size. N 
Anderson-Darling Normality Test  Mean     StDev   SE Mean        95% CI 

J
 

Hs[m] 7687 A-Squared: 40.63             p-value    <0.005 
 1.92191  0.50899  0.00581  (1.91053; 
1.93329) 

Tp[s] 7687 A-Squared: 170.24            p-value <0.005 10.7142   3.1631   0.0361  (10.6435; 10.7849) 

P [kW/m] 7687 A-Squared: 202.38            p-value <0.005 23.513   13.783    0.157  ( 23.205;  23.821) 

F
 

Hs [m] 7008 A-Squared: 15.53             p-value <0.005 
1.87711  0.46451  0.00555  (1.86623; 
1.88798) 

Tp[s] 7008 A-Squared: 145.66            p-value <0.005 10.4387   3.0192   0.0361  (10.3680;10.5094) 

P [kW/m] 7008 A-Squared: 208.03            p-value <0.005 21.897   12.716    0.152  ( 21.599;  22.195) 

M
 

Hs  [m] 7689 A-Squared: 21.63             p-value <0.005 
1.80126  0.43902  0.00501  (1.79144; 
1.81107) 

Tp[s] 7689 A-Squared: 70.03             p-value <0.005 10.8515   2.8814   0.0329  (10.7871; 10.9159) 

P [kW/m] 7689 A-Squared: 131.79            p-value <0.005 20.780   10.801    0.123  ( 20.538;  21.021) 

A
 

Hs[m] 7440 A-Squared: 36.30             p-value <0.005 
1.80543  0.38490  0.00446  (1.79668; 
1.81417) 

Tp[s] 7440 A-Squared: 118.55            p-value <0.005 10.3233   2.7986   0.0324  (10.2597; 10.3869) 

P[kW/m] 7440 A-Squared: 161.64            p-value <0.005 19.763    9.983    0.116  ( 19.536;  19.990) 
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M
 

Hs[m] 15376 A-Squared: 29.32             p-value <0.005 
1.73386  0.31984  0.00258  (1.72881; 
1.73892) 

Tp [s] 15376 A-Squared: 491.92            p-value <0.005 10.2287   3.0524   0.0246  (10.1804; 10.2769) 

P[kW/m] 15376 A-Squared: 258.45            p-value <0.005 17.8068   7.9966   0.0645  (17.6804; 17.9332) 

J
 

Hs[m] 14880 A-Squared: 29.78             p-value <0.005 
1.64809  0.30307  0.00248  (1.64322; 
1.65296) 

Tp [s] 14880 A-Squared: 618.05            p-value <0.005 10.1125   3.0069   0.0246  (10.0642; 10.1608) 

P[kW/m] 14880 A-Squared: 291.89            p-value <0.005 16.0597   7.4576   0.0611  (15.9399; 16.1795) 

J
 

Hs[m] 15376 A-Squared: 46.52             p-value <0.005 
1.59065  0.26830  0.00216  (1.58640; 
1.59489) 

Tp [s] 15376 A-Squared: 849.41            p-value <0.005 10.1592   2.8717   0.0232  (10.1138; 10.2046) 

P[kW/m] 15376 A-Squared: 254.08            p-value <0.005 15.0375   6.6470   0.0536  (14.9324; 15.1425) 

A
 

Hs[m] 7688 A-Squared: 27.43             p-value <0.005 
1.57631  0.26316  0.00300  (1.57043; 
1.58219) 

Tp[s] 7688 A-Squared: 337.55            p-value <0.005 10.2906   2.9649   0.0338  (10.2243; 10.3569) 

P[kW/m] 7688 A-Squared: 174.44            p-value <0.005 15.1119   7.2471   0.0827  (14.9499; 15.2740) 

S
 

Hs[m] 7440 A-Squared: 13.53             p-value <0.005 
1.59887  0.27965  0.00324  (1.59251; 
1.60522) 

Tp[s] 7440 A-Squared: 204.76            p-value <0.005 10.2960   2.8409   0.0329  (10.2315; 10.3606) 

P[kW/m] 7440 A-Squared: 143.42            p-value <0.005 15.4316   7.0104   0.0813  (15.2723; 15.5910) 

O
 

Hs[m] 7687 A-Squared: 24.60             p-value <0.005 
1.60069  0.33400  0.00381  (1.59322; 
1.60816) 

Tp[s] 7687 A-Squared: 61.21             p-value <0.005 10.8908   2.8969   0.0330  (10.8261; 10.9556) 

P[kW/m] 7687 A-Squared: 188.74            p-value <0.005 16.5502   8.6290   0.0984  (16.3573; 16.7431) 

N
 

Hs[m] 7440 A-Squared: 45.13             p-value <0.005 
1.65678  0.39347  0.00456  (1.64784; 
1.66573) 

Tp[s] 7440 A-Squared: 47.37             p-value <0.005 11.0808   2.9679   0.0344  (11.0133; 11.1482) 

P[kW/m] 7440 A-Squared: 212.76            p-value <0.005 18.439   11.008    0.128  ( 18.189;  18.689) 

D
 

Hs[m] 7688 A-Squared: 65.15             p-value <0.005 
1.80871  0.45569  0.00520  (1.79852; 
1.81890) 

Tp[s] 7688 A-Squared: 110.55            p-value <0.005 10.7810   3.1661   0.0361  (10.7102; 10.8518) 

P[kW/m] 7688 A-Squared: 298.54            p-value <0.005 21.213   13.252    0.151  ( 20.917;  21.509) 
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