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Abstract- This paper presents an islanding detection method (IdM) based on phasor measuring unit (PMU) 

technology. The PMUs are used to measure the synchronized data and collect it in real-time. Three PMUs are 

located in this work to obtain full observability: at distributed generator (DG) side, load location, and point of 

common coupling (PCC). The measured signals are directly fed to the classifier to identify the islanding events. 

This algorithm shows that the proposed method can detect the islanding with 100% detection accuracy and zero 

non-detection zone (NDZ). Both DG types are tested in this paper: inverter-based DG and rotating machine-

based DG. The detection time of the remote method is five cycles for the inverter-based test system and seven 

cycles for the rotating machine test system. 

 

Key-Words: Artificial Neural Network (ANN), Decision Tree (DT), Islanding Detection Method (IdM), K-

nearest Neighbor Algorithm (KNN), Support Vector Machine (SVM), rotating machine DG, inverter-based 

DG.  

   

1 Introduction  
The rapid increase in electrical demand with the 

problem of fuel consumption creates a serious need 

for renewable energy resources. This green energy 

reduces the impacts of using fuel to generate 

electricity by using sunlight [1], wind energy, 

hydropower, tidal energy, geothermal energy, and 

other renewable energies. These distribution 

generators (DG) are connected in a micro-grid (MG) 

at the distribution level. Any MG can be operated in 

two conditions: islanding and non-islanding. The 

islanding operation of the micro-grid can be clearly 

defined when the PCC is identified. The PCC is an 

electrical connection point depending on the 

distribution network operators and the MG's owner 

(or operator). The MG may be islanded for different 

cases such as faults inside the MG, overload, 

maintenance purposes, failure in the DG system … 

In islanding mode, the frequency and voltage are the 

most critical issues to be considered in the 

controller; whereas, the power control in MG is a 

vital issue in a non-islanding mode. In some cases, 

the MG does not work in islanding mode, so the 

DGs are gotten down if the MG senses an islanding 

event. Therefore, to convert the control mode from 

islanding to non-islanding mode or turn off the DGs, 

an accurate islanding-detection method (IdM) is 

needed.  

IdMs are generally categorized as local and 

remote methods. Regional techniques are 

categorized as hard computing and soft computing 

method; furthermore, hard computing methods are 

classified into passive, active, and hybrid. On the 

other hand, soft computing methods can be 

classified based on an intelligence-based algorithm 

and signal processing algorithms. Moreover, remote 

IdMs can be categorized into power line carrier 

communication (PLC), supervisory control and data 

acquisition (SCADA), trip transfer method (TTM), 

and wide-area measurement system (WAMS). 

A new artificial neural network-based method 

for islanding detection of distributed generators is 

presented in [2]. The authors use the voltage at the 

PCC to train four layers of ANN with 8, 4, 2, and 1 

perceptron per layer, respectively. The voltages are 

collected with two sample rates: 64 sample/cycle 

and 128 sample/cycle; then, they are used as input to 

the ANN. The data window is a complete cycle, and 

the algorithm acquaints the data cycle-by-cycle. The 

proposed algorithm can detect the islanding within 

nine cycles for the island and 18 cycles for non-

island events. The algorithm is tested for a 0.1-1 Pu 

power mismatch. The NDZ is less than 0.25 Pu in 

the 64 sample/cycle system and less than 0.15 Pu in 

the 128 sample/cycle system. The NDZ in this 

algorithm depends on the detection time, where the 

accuracy of this algorithm reaches 99.88 %, 94.71%, 

and 92.91% for detection time of 2 sec, 1 sec, and 

0.5 sec, respectively.  

An islanding detection method using a ridgelet 

probabilistic neural network is presented in [3]. This 

paper presents a comparison between the ridge-let 

probabilistic neural network and PNN. The voltage 

at the PCC is measured, and six features are 

extracted from the measured three-phase voltage: 

mean, maximum, minimum, standard deviation, 
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energy, and entropy. Inverter-based DG is used to 

verify the accuracy of this algorithm. The accuracy 

of this algorithm is 100%, with a small NDZ (< 3%) 

at quality factor =1. Time detection is 0.188sec.  

Islanding detection using SVM is presented by 

[4]. Researchers propose an IdM for single-phase 

inverter-based DG. The features are extracted for 

the voltage and current signal at the PCC using the 

autoregression modelling technique. Then, the SVM 

is learned under different scenarios of islanding and 

non-islanding. This method can detect islanding 

cases within 50 ms. The NDZ in this method is zero. 

Other applications of WAMS that covered various 

power system aspects are presented in [5-8]. 

 

 

2 Systems Understudy  
In this study, two test systems are presented to cover 

all DGs scenarios. PV-test system is modelled as an 

example on inverter-based DG, and doubly fed 

induction generator (DFIG) test system is modelled 

as an example on rotating machine-based DG 

system.  

 

2.1 DFIG-based Test System  
The single line diagram of the DFIG-based DG test 

system is shown in Figure 1. This system is 

modelled by MATLAB 2020a/Simulink platform.  

 

DFIGTL(1) Grid

Load 1

TR (1)TR (2) TL (2) TL (1)

PCC Loacal

 
Fig. 1: DFIG-Based DG test system 

 

This test system consists of one DFIG connected to 

a load at 515 V level, a step-up distribution 

transformer 515V/25 kV, and a step-up power 

transformer to change the medium voltage (25 kV) 

to high voltage connect with the primary grid (120 

kV).  

The detailed parameters of the DFIG are 

attached in Table A-1 in the appendix. The DFIG in 

this test system consists of 6 turbines. In Table A-1, 

generator parameters, turbine parameters, converter 

parameters, controller parameters, and drive train 

parameters are presented per turbine. The total rated 

power of the DFIG is (1.5MW × 6 turbines). Load 1 

is changed to achieve different power mismatches 

regarding the standards [2]. Load 1 is modelled as a 

constant impedance load. Load quality factors are 

selected to be 1 in this research. 

The MG in this test system is connected to the 

PCC via a 10 Km transmission line (TL1). The 

system consists of a low-voltage load (L1) at the 

DG-connected point. The medium-voltage station 

(PCC) is connected to a robust grid (infinite bus) via 

a 20 Km transmission line (TL2). Table A-2 in the 

appendix shows the system parameters' values: 

transformers, lines, and the primary grid. 

 

2.2 PV-Based Test System  
The single line diagram of the PV-Based DG test 

system is shown in Figure 2. Like the previous test 

system, the MATLAB 2020a/ Simulink platform is 

used to model this system.  

In this system, the DG is connected to the 250 V 

side, then the power is transformed to 25KV level at 

the load side, and the grid is connected at 120 kV. 

The system operates under 60 Hz, and the nominal 

power of the DG is 250 KW. The DG is connected 

to the PCC via a step-up transformer (250V/25KV), 

and the local load (Load 1) is connected at the PCC 

in the medium voltage level. This load is changed to 

achieve different real and reactive power 

mismatches.  

 

PV Grid

Load 1

TR (1)TR (2) TL (1)

PCC Loacal

AC

DC
Filter 

Load 2

Fig. 2: PV-Based DG test system 

 

PV parameters, converter parameters, and filter 

parameters are attached in Table A-3 in the 

appendix. System parameters (transformer 1 and 2, 

transmission line, load, grid) are shown in Table A-

4 in the appendix. The maximum power point 

tracking controller in this system is based on 

perturbing and observation (P&O). A 3-bridge 

IGBT converter is used to convert the DC-generated 

power to 60 HZ AC power.  

These two test systems are used to validate the 

proposed IdM in the following sections. The 

simulations are run several times under different 

power mismatches for three events: increasing local 

load, decreasing local load, and islanding event. The 

islanding scenarios are achieved by opening the 

circuit breaker at the PCC for both systems. 

  

 

3 Proposed Algorithm  
This paper has three PMUs installed at the DG 

connected point, load connection, and PCC. For a 

huge system, optimal PMUs placements should be 

identified firstly [9]. From each PMU, the 

synchronized voltage (magnitude and angle), 

frequency, ROCOV, and ROCOF are measured. The 

sample rate of the PMU is 1 sample/cycle refer to 
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std. IEEE C118.2004. So, the number of the features 

here are 15 (five at PCC, five at DG point, and five 

at the load). Three types of events are covered: 

switch on (inductive/ capacitive/ resistance) load, 

switch of (inductive/ capacitive/ resistance) load, 

and islanding events. The number of events is 

shown in Table 1. These events cover real power 

imbalance from -33% to 33% with step size 6% for 

non-islanding events and 3% for islanding events, 

and imbalance reactive power from -22% to 22% 

with step size 4%.  

 

Table 1. Events and islanding 

Event  Inductive  Capacitive  Resistance 

Switch on 

load 

55 55 11 

Switch off 

load 

55 55 11 

Islanding 242 

Total 484 

 

From each event, one cycle before the event and ten 

cycles after the event are collected. All features are 

computed within this period. The sampling 

technique is based on cycles; for the one-cycle 

sampling, the features are calculated for each cycle 

and represented as a sample; so, the length of the 

all-feature matrix in one cycle sampling is (484 

events ×11 cycle = 5324) with a width equal to the 

total number of features (15 features). 

The move rate in more than one cycle sampling 

is just one cycle; for example, in three-cycle 

sampling, the first sample covers the first three 

cycles, and the second sample covers the 2nd,3rd, 

and 4th cycles, where the third sample covers the 

cycles between the 3rd and 5th. The islanding event 

is obtained when the half cycles in a sample become 

islanding. For example, if the islanding occurs at the 

end of cycle number 4 and the sampling size is 5 

cycles, the first sample, which covers the first five 

cycles considered a non-islanding event, and the 

second sample which covers the cycles between the 

second and the sixth is also regarded as a non-

islanding event. However, the samples above the 

second are considered islanding because the number 

of islanding cycles is greater than that of non-

islanding cycles within their period.  

Four classification methods are used to predict 

the islanding events: support vector machine 

(SVM), k-nearest neighbours' algorithm (KNN), 

decision tree algorithm (DT), and artificial neural 

network as a classifier (ANN).  

 

3.1 Support Vector Machine (SVM) 
SVM is a classifier that uses a separating hyperplane 

to classify data. SVM uses kernel functions to 

identify the optimal hyperplane to classify the given 

data with the minor error for a given labelled 

dataset, where the input space is projected into a 

high-dimensional feature space [10]. 

 

3.2 k-Nearest Neighbors (KNN) 
KNN is a non-parametric Machine Learning 

algorithm based on the Supervised Learning 

technique. The KNN algorithm assumes that the 

new case/data and existing cases are similar, and it 

places the new case in the closest category to the 

existing ones. The KNN algorithm saves all 

available data and classifies a unique data point 

based on its similarity to the current data. So, the 

new data can be quickly classified into a well-

defined category using the KNN algorithm [11]. 

 

3.3 Decision Tree (DT) 
DT is a hierarchical model that breaks down a 

complex decision-making problem into a series of 

simple decisions. The root node, which contains the 

initial classification problem, is recursively split into 

child nodes using a top-down methodology. This 

splitting continues until the leaf node is reached, i.e., 

until a classification has been established [12].  

 

3.4 Artificial Neural Network (ANN) 
An ANN is a technique for creating a network of 

neurons that works similarly to a biological neural 

network. It can recognize patterns and learn from 

them by using functions that transform data and 

forward them as activation functions to other 

neurons in the next layer. The process will be 

repeated until a neuron in the output layer is 

activated to identify the specific dataset that needs 

to be found. 

 

 

4 Results and Discussions 
The Four classification methods are applied to the 

extracted features (15 Features) for the different 

samples' sizes. The total events, Table 1, are divided 

into 80% for the training, 20% for the testing, and 

20% for the validation. The results of the four 

classification methods for both test systems are 

presented in the following subsections.  

 

4.1 Rotating-Based DG Test System  
ROC curves of the different classification methods 

for the PMU model are presented in Figure 3. ROC 

curve is plotted between false alarm and detection 

rate. In IdMs, false alarm means the algorithm 

detects islanding for non-islanding events, and the 

detection rate is the percent of the true detection of 

the islanding events. For Figure 3, the detection rate 
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reaches 100% in just two classification algorithms: 

KNN and DT. The detection rate reaches 100% for 

the sampling greater than or equal to five cycles in 

KNN and greater than or equal to seven cycles using 

DT.  

From the figure, the false alarms for the one-

cycle sampling are about 2% in SVM, 5% in KNN, 

6% in DT, and 0.5% in ANN; so, 2%, 5%, 6%, 

0.5% of the non-islanding events are falsely 

detected as islanding in SVM, KNN, DT, and ANN, 

respectively. On the other hand, the detection rates 

reach about 70%, 90%, 80%, and 70% at one-cycle 

sampling for the SVM, KNN, DT, and ANN, 

respectively. As a conclusion from this figure, the 

ANN algorithm has the best false alarm value, and 

KNN has the best detection rate value for the one-

cycle sampling.  

 

 
Fig. 3: ROC curves for the DFIG model at different 

classification methods.   

 

From Figure 3, the effect of the sampling on the 

false alarm and detection rate can be analyzed as 

follow: 

- The detection rate of the three-cycle sampling is 

almost equal (actually, it is a little smaller) to the 

detection rate of the one-cycle in KNN, DT, and 

ANN, but the false alarms are enhanced in the 

three-cycle sampling for the four classification 

algorithms.  

- The false alarm reaches about 0 % in five-cycle 

sampling for the four classification methods. 

- The detection rates are enhanced for the seven-

cycle sampling in both SNM and ANN, but the 

detection rate in KNN for the seven-cycle 

sampling is almost equal to that for the five-

cycle sampling.  

- The performance of the four methods is matched 

using seven-cycle and nine-cycle sampling.  

 

In addition to the ROC, the accuracy at different 

samples is presented in Figure 4. Based on this 

figure, the best classification method is KNN. The 

detection accuracy of the method reaches 100% with 

zero NDZ for the KNN at sampling equal to 9 

cycles; so, the proposed PMU-KNN algorithm can 

detect the islanding event with zero NDZ within 180 

ms.  

The accuracy in Figure 4 is defined in equation 

1. From the figure, the accuracy of the method is 

increasing in general with the detection time 

(sampling); in contrast, the accuracy of the three-

cycle sampling is less than that in one-cycle 

sampling using ANN, that means the effect of 

decrease the detection rate in Figure 3 is more 

significant than the enhancement in the false alarm.  

  

𝐴𝑐𝑐𝑢𝑟𝑒𝑐𝑦 = (1 −
∑|𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡|

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
) × 100% (1) 

 

 
Fig. 4: Accuracy of PMU model for different 

classification methods. 

 

In Figure 5, true positive (TP), true negative (TN), 

false positive (FP), and false-negative (FN) for the 

PMU model using the KNN classification method 

are presented. The definitions of these indices are:  

 

𝑇𝑃 =
 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑖𝑠𝑙𝑎𝑛𝑑𝑖𝑛𝑔 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑠𝑙𝑎𝑛𝑑𝑖𝑛𝑔 
 × 100%  (3.5) 

𝑇𝑁 =
𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑛𝑜𝑛𝑖𝑠𝑙𝑎𝑛𝑑𝑖𝑛𝑔 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛𝑖𝑠𝑙𝑎𝑛𝑑𝑖𝑛𝑔 
 × 100%   (3.6) 

𝐹𝑃 =
𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑖𝑠𝑙𝑎𝑛𝑑𝑖𝑛𝑔 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑠𝑙𝑎𝑛𝑑𝑖𝑛𝑔 
 × 100%    (3.7) 

𝐹𝑁 =
𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑛𝑜𝑛𝑖𝑠𝑙𝑎𝑛𝑑𝑖𝑛𝑔 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛𝑖𝑠𝑙𝑎𝑛𝑑𝑖𝑛𝑔 
  × 100%   (3.8) 

  

From Figure 5, the FN becomes zero at sample 

greater than or equal to 5 cycles, and a negligible FP 

is shown in 7 cycles sampling. For nine sampling 

cycles, the FP becomes zero, and the TP and TN 

become 100%.  

The NDZ of the KNN-PMU model is shown in 

Figure 6 to show the performance of the proposed 
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algorithm to the real/reactive power imbalance. This 

figure shows the accuracy of the proposed algorithm 

to the power (real and reactive) mismatches. The 

accuracy of the outer surface areas is 100%. Then 

the accuracy decreases between each surface and the 

next by 5%. From the figure, the NDZs (which is 

defined here as an area where the accuracy is less 

than 100%) are shown in the negative real power 

imbalance at zero reactive power imbalance. The 

accuracy of the method for any zone is above 90% 

for five, seven, and eight cycles and above 95% for 

six cycles. The accuracy of the proposed method is 

to reach 100% with zero NDZ at sampling equal to 

nine cycles. 

 

 
Fig. 5: PMU-KNN Performance, TP, TN, FP, and 

FN. 

 

 
Fig.. 6: Accuracy and NDZ of the PMU-KNN 

 

4.2 PMU-AI IdM for Inverter-Based DG 
ROC curves of the different classification methods 

at different sample rates are presented in Figure 7. 

The detection rate reaches 100% for all methods at a 

sample rate equal to 7 cycles or above. The best 

classification algorithm is KNN, where 100% of the 

detection rate is reached at a sample rate equal to 6 

cycles. The four algorithms' performance can be 

arranged from the best to the worst based on Figure 

7: KNN, DT, SVM, then ANN. The accuracy of all 

algorithms is reached 100% at a sample rate equal to 

7 cycles. The accuracy of the KNN at five cycles 

sample reaches 99.5%.  

 

Figure 8 shows TP, TN, FP, and FN for the PMU 

model using the KNN classification method. From 

the Figure, FN can be neglected at sampling equal to 

three cycles; the method can detect the islanding 

events within three cycles, but it needs to at least 

five cycles to detect the non-islanding events. The 

accuracy of the KNN method reaches 100% for zero 

NDZ at sampling equal to 6 cycles or more. The 

accuracy of the proposed method exceeds 99.9 at a 

sample rate equal to 5 cycles and above. 

 

 
Fig. 7: ROC for PV model at different samplings   

 

The NDZ of the KNN-PMU model is shown in 

Figure 9. This figure shows the NDZ of the KNN at 

a sample rate equal to one cycle. The NDZ is limited 

to the test zone (±33% real power mismatch and ±22 

% reactive power mismatch). The accuracy of the 

detection is greater than 90% for all NDZ. The NDZ 

is shown in a negative real power mismatch area.  

 

 
Fig. 8: PMU-KNN Performance, TP, TN, FP, and 

FN. 
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Fig. 9: NDZ of the PMU-KNN 

 

At the end of this section, the results can be 

summarized in Table 2. This table presents the best 

accuracy at KNN for inverter-based DG and DT and 

KNN for rotating machine DG. Table 3 compares 

the results of the proposed algorithms with the best 

algorithms from the literature. From the table, the 

proposed algorithm has the lowest detection time for 

both DG types.   

 

Table 2. The best accuracy of each method 

Test system Classifier Accuracy  Cycles 

Inverter Based 

 

SVM 100% 7 

DT 100% 7 

KNN 100% 6 

ANN 100 % 7 

Rotating Machine SVM 95% 9 

DT 100% 9 

KNN 100% 9 

ANN 97% 9 

 

Table 3. result Validation 

Test 

System 

Ref. DT 

(sec) 

Accuracy NDZ 

Rotating 

machine 

[2] 2 99.88 % - 

[13] 0.29  100 % Zero 

[14] - 97.77% Zero 

Proposed 0.18  100% Zero 

Inverter 

based 

[2] 1  94.71 % - 

[13] 0.37  100 % Zero 

[14] - 97.22 % Zero 

[15] 0.5  97.1 % <3% 

[16] 0.188  100 % <3% 

Proposed  0.12  100%  Zero 

 

5 Conclusion  
In this paper, the PMU-Based Islanding detection 

method is proposed. Four artificial intelligence 

classification algorithms are used here: KNN, ANN, 

DT, and SVM. The proposed method is tested for 

both DG types; inverter-based DG and rotating 

machine-based DG. The four classification methods 

are evaluated using ROC curves and detection 

accuracy. The results show that the proposed 

algorithm can detect the islanding with 100% 

accuracy and zero NDZ within 6 and 9 cycles for 

inverter-based DG and rotating machine-based DG, 

respectively. The performance of the proposed 

algorithm concerning the real and reactive power 

mismatches is presented for the KNN algorithm at 

different sampling. Finally, the algorithm results are 

compared with different algorithms from the 

literature, and the effectiveness of the proposed 

algorithm is proven.  
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APPENDIX A 

Table A-1. DFIG-DG parameters 
Generator 

parameter /turbine 

Value  Converter 

Parameter/ 

turbine 

Value  

Nom. Power 

(MVA) 

1.5/0.9  Grid side current 0.8 Pu 

L-L Voltage  575 V Grid side 

inductance 

0.3 Pu 

Frequency  50 Hz Grid side 

resistance 

0.003 

Pu 

Stator resistance  0.023 Pu DC voltage  1150 

V 

Stator inductance  0.18 Pu  DC bus 

capacitance  

1e-2 F 

Rotor resistance  0.016 Pu Line filter 

capacitance 

120e3 

Rotor inductance  0.16 Pu Controller 

parameters  

Value 

Magnetizing 

inductance  

2.9 Pu DC bus voltage 

(Kp) 

8 

Inertia constant  0.685 DC bus voltage 

(Ki) 

400 

Pairs of poles  3 Grid side 

converter (Kp) 

0.83 

Friction factor  0.01 Grid side 

converter (Ki) 

5 

Turbine 

parameter 

Value  Speed regulator 

(Kp) 

3 

Output power 

(MW) 

1.5 Speed regulator 

(Ki) 

0.6 

Wind speed (m/s) 11 Rotor side 

converter (Kp) 

0.6 

  Rotor side 

converter (Ki) 

8 

Drive train 

parameters 

Value  Pitch controller 

(Kp) 

3 

Wind turbine 

inertia 

4.32 s Pitch controller 

(Ki) 

30 

Shaft spring 

constant  

1.11 

torque/rad 

Max pitch angle 27 

Shaft mutual 

damping  

1.5 Pu  Rate of change of 

pitch angle 

10 

 

Table A-2. DFIG-Based System parameters  
TR1 

parameters  

Value  TL1 Parameters/Km Value  

Vector group  YgD1  Frequency  50 Hz 

Nominal power 12 MVA Pos. seq. resist. 

(Ohm) 

0.1153 

Frequency  50 Hz Zero seq. resist.  1.05e-3 

V1/V2 25e3/575  Pos. seq. Inductance  0.413 

Win. 1 

Resistance 

0.001 Pu Zero seq. Inductance 

(H) 

3.32e-3 

Win. 1 

Inductance 

0.025 Pu Pos. seq. 

capacitance(F) 

11.33e-

9 

Win. 2 

Resistance 

0.001 Pu Zero seq. 

capacitance(F) 

5-e9 

Win. 2 

Inductance 

0.025 Pu Line length (Km) 10 

Mag. 

Resistance  

500 TL2 Parameters/Km Value  

Mag. 

Inductance   

Inf.  Frequency  50 Hz 

TR2 

parameters  

Value  Pos. seq. resist. 

(Ohm) 

0.1153 

Vector group  YgD1  Zero seq. resist. 

(Ohm) 

1.05e-3 

Nominal power 12 MVA Pos. seq. Inductance 0.413 

Frequency  50 Hz Zero seq. Inductance  3.32e-3 

V1/V2 (KV) 120/25  Pos. seq. 

capacitance(F) 

11.33e-

9 

Win. 1 

Resistance 

0.001 Pu Zero seq. 

capacitance(F) 

5-e9 

Win. 1 

Inductance 

0.025 Pu Line length (Km) 20 

Win. 2 

Resistance 

0.001 Pu Grid Parameters  Value  

Win. 2 

Inductance 

0.025 Pu Pos. seq. resist. 

(Ohm) 

0.576 

Mag. 

Resistance  

500 Zero seq. Resist.  1.728 

Mag. 

Inductance   

Inf.  Pos. seq. Inductance  0.0183 

  Zero seq. Inductance  0.055 
 

Table A-3. PV parameters  
PV parameters  Value  Converter 

Parameters 

Value  

Parallel strings  88  Number of bridge 

arms  

3 

Series module  7 Snubber resistance  1e6 ohm 

Max. Power 

(W) 

414.801 Power electronic 

device 

IGBT/ 

Diodes 

Cells per 

module 

128 Internal resistance 

(Ron) 

1e-3 ohm 

𝑉𝑂𝑐(V) 85.3 IGBT forward volt.  0 

𝐼𝑆𝑐 (A) 60.9 Diode forward volt.  0 

𝑉𝑚(V) 72.9 Filter parameters  Value 

𝐼𝑚 (A) 5.69 R (m ohm) 0.3745 

𝛼 (%/deg.C) -0.299 L (mH) 0.0994 

 𝛽  (%/deg.C) 0.03076 C (𝑢F) 0.1061 

 

Table A-4. PV-Based Test System parameters 
TR1 

parameters  

Value  TL Parameters/Km Value  

Vector group  YgD1  Frequency  60 Hz 

Nominal power 25 MVA Pos. seq. resist. 

(Ohm) 

0.1153 

Frequency  60 Hz Zero seq. resist. 

(Ohm) 

1.05e-3 

V1/V2 25e3/250  Pos. seq. Inductance  0.413 

Win. 1 

Resistance 

0.0012 

Pu 

Zero seq. Inductance 

(H) 

3.32e-3 

Win. 1 

Inductance 

0.03 Pu Pos. seq. 

capacitance(F) 

11.33e-

9 

Win. 2 

Resistance 

0.0012 

Pu 

Zero seq. 

capacitance(F) 

5-e9 

Win. 2 

Inductance 

0.03 Pu Line length (Km) 14 

Mag. 

Resistance  

200 Grid Parameters  Value  

Mag. 

Inductance   

200  Pos. seq. resist. 

(Ohm) 

0.576 

TR2 

parameters  

Value  Zero seq. resist. 

(Ohm) 

1.728 

Vector group  YgD1  Pos. seq. Inductance  0.0183 

Nominal power 47 MVA Zero seq. Inductance  0.055 

Frequency  60 Hz Laod (2) parameters  Value  

V1/V2 (KV) 120/25  V (KV) 25 

Win. 1 

Resistance 

0.0027 

Pu 

F (HZ) 60 
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Win. 1 

Inductance 

0.08 Pu P 30MW 

Win. 2 

Resistance 

0.0027 

Pu 

QL 2MW 

Win. 2 

Inductance 

0.08 Pu QC 0 

Mag. 

Resistance  

500 Mag. Inductance   500 
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