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Abstract: The rapid growth of renewable energy generation in the power grid, notably from wind and solar 

energy resources, has made these generators a major source of uncertainty in recent years, with load 

behavior being the largest driver of unpredictability. Generation and load balancing are critical in the 

economic scheduling of manufacturing units and energy market activities. Energy forecasting can help to 

alleviate some of the problems that come with resource unpredictability. Solar and wind energy projections 

attract the scientific community and numerous research articles are provided. However, the clarity and 

robustness of existing models may still be improved. For solar and wind power short-term forecasting 

(STF), this paper proposes a Resilient Back Propagation Neural Network (RBPN) model. Because solar 

irradiation and wind speed are not linear and unexpected, STF is difficult to complete under changing 

weather circumstances. However, a Resilient Back Propagation Neural Network (RBPN) is presented and 

is appropriate for STF modeling. It also improves power quality in various situations, including voltage 

imbalance correction, active and reactive power control, and voltage regulation. Simulations performed 

with Matlab Simulink software are used to validate the performance of the proposed forecasting system. 

The suggested method also includes a sensitivity analysis of numerous input variables for the optimal model 

selection and model performance comparison with multiple linear regression and persistence models. 

 

Keywords: Resilient Back Propagation Neural Network, Short Term Forecasting, Solar Forecast, Wind 

Forecast and THD 

 

1. Introduction 
The power system is changing due to 

rising temperatures, climate change, and 

economic difficulties. This has led to a significant 

expansion of renewable energy in the power grid 

during the previous decade. When substantial, 

fast modifications are made to non-

programmable sources, dependability and 

economy may suffer. Solar and wind power 

forecasts are used to balance the management 

load and generated energy. Furthermore, because 

the changing pattern of wind power cannot be 

predicted, extra reserves must be used to 

compensate for the unbalance, raising the total 

cost of the power system. In order to give 

accurate and trustworthy information about what 

may be predicted at a moment, we have to 

analyze solar and wind energy forecasting 

systems [1]. 

In terms of procedure, the regulatory 

authority has provided precise legislative 

standards to enhance the forecast of generated 

energy from solar and wind power in Italy, 

demanding step-by-step responsibility [2]. The 

impact of a varied definition of forecast 

inaccuracy on plant management and power 

market planning could be significant. As a result, 

some power providers rely on renewable energy 

plant monitoring systems to forecast electricity 

generation [3]. Soft computing approaches 

became an essential instrument to predict the 

output of renewable energies 24 hours an hour 

from NWP, supplied by meteorological services 

to the network management in recent years. 

Reference [4] provides an accurate short-

term photovoltaic forecasting model that is done 

in real-time. So here's an alternative way to look 

at a similar situation. This study employs the 
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Resilient Back Propagation Neural Network to 

build a tool for forecasting solar and wind power 

for the short term. The remaining part of this 

work is organized as follows: 

i. Section two discuss literature surrey 

based on existing forecasting methods 

ii. Section three discuss working function of 

proposed forecasting system 

iii. Section four discuss the simulation 

results and performance analysis of 

proposed forecasting system 

iv. Finally section five discuss the 

conclusion and future work of the 

research 

 

2. Literature Survey 
This section provides a literature review 

of wind and solar power forecasting or 

forecasting methods that have been developed 

during the past several years. In general, models 

may be categorized as those that involve the 

system's Numerical Weather Forecasting 

(NWP).In terms of methodologies that include 

NWP data, there are two basic approaches: 

physical and statistical [14]. To arrive at the best 

feasible wind speed estimate at the wind farm's 

location, the physical approaches combine NWP 

and physical aspects. The wind forecast is then 

translated to a power forecasting by use of a 

power curve. Many explanatory factors, such as 

NWP forecasts and past power generation data or 

meteorological variables, are associated using 

statistical models [15].  

The statistical approaches can be thought 

of as regression models that estimate a function's 

parameters that connect future wind power to 

explanatory variables. Physical or meteorological 

data, such as orography, roughness, barriers, 

pressure, and temperature will be input variables 

for a physical model. The objective of the 

statistical method is to determine if the online 

power statistics are correlated. The wind farm 

history might be utilized to construct a statistical 

model. Long-term forecasting benefits from the 

physical method, while short-term forecasting 

benefits from the statistical method [16, 17]. 

Certain innovative methods based on 

artificial intelligence, such as Artificial Neural 

Network (ANN) [17], fuzzy logic and neuro-

fuzzy [18, 19], evolutionary algorithms [20], and 

some hybrid methods [21, 22], have piqued the 

interest of researchers in recent years. Power 

plants that participate in energy market activities 

benefit from more accurate forecastings by 

decreasing the need for power curtailments and 

imbalance fines, resulting in greater income [23]. 

In the simplest forecasting approach, persistence 

implies that the solar irradiance or wind speed is 

the same as the previous step.  

In recent years, academics have 

concentrated their efforts on developing 

forecasting algorithms that can be utilized for 

short-term forecastings extending from minutes 

to a few days. Because this data is important to 

the operation of power system networks, several 

tasks require day-ahead forecasts, including 

scheduling and unit commitment. Day-ahead 

projections are also crucial for congestion 

management and reserve allocation. Solar 

irradiance is adversely affected by cloud 

movement and wind speed changes, resulting in 

daily ramps that must be managed at the 

operational level.   

Researchers exhibit several applications 

of forecasts in terms of spatial resolution and 

temporal horizon in [26]. The Coupled 

Autoregressive and Dynamical System (CARDS) 

model is another statistical method [27]. Since 

solar radiation includes a seasonal component, 

Fourier series and power spectrum analysis were 

used to season the data [28]. 

 

3. Proposed Solar and Wind 

Forecasting System 
Figure 2 illustrates the block diagram of 

the forecasting model produced using the 

suggested system for Resilient Back 

Development Neural Network. This research 

employs a sort of short-term forecasting. 

Historical weather data is available at the 

Technical University campus in Rajasthan, 

India's northern state [29]. RBPN is a recent 

approach that is based on biological neural 

networks. They operate based on interconnected 

neurons that form a network between inputs and 

outputs; the neurons are made up of a 

mathematical function, biases, and weights. This 

network of neurons is built during the training 

phase to learn the data using proper learning 

algorithms. Clustering, Classification, and 
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Regression are some of the jobs that RBPNs can 

be trained to complete. We need to create a neural 

network to solve a regression problem to forecast 

weather variables.  

 
Figure.2 Block Diagram of Proposed 

system 

Resilient Back Propagation Neural 

Network trained with the Backpropagation (BP) 

algorithm can approximate a wide range of 

nonlinear functions. It can be used to predict the 

weather. Only high-quality historical data is 

required for accurate projections. Weather 

forecasting could benefit from the use of the 

Multi-Layer Perceptron (MLP) model. MLP with 

BP is a superior option to traditional numerical 

approaches for predicting dynamic and nonlinear 

weather processes. Using MLP and Radial Basis 

Function Network, meteorological factors such as 

rainfall, wind speed, irradiance, and temperature 

can be properly projected. The Proposed system 

consists of three parts such as 

i. Solar Forecasting 

ii. Wind Forecasting 

 

3.1 Resilient Backpropagation Neural 

Network Solar Forecasting  

Bio neural networks were used to 

develop the RBPN solar forecasting model based 

on their structure and information processing. 

The RBPN solar forecast model is calculated 

using a network of interconnected neurons and a 

joining processing algorithm. When the learning 

phase modifies the weight of the link based on 

external or internal network information, any 

system may be imitated. RBPN's ability to learn 

from existing sample data in a way that resembles 

natural intelligence is highly useful. RBPN learns 

from sample data by creating an input-output map 

that eliminates the need to analyze the model 

equation. It develops into a crucial nonlinear 

statistical data modeling tool for describing 

complicated input-output relationships. Many 

difficulties like as pattern recognition or 

classification, function approximation, 

optimization, forecasting and prediction are 

tackled with RBPN. 

 Figure.3 RBPN Model of Solar 

Forecasting 

Any nonlinear mapping can be 

approximated very accurately by a properly 

trained RPBN. In the supervised learning mode, 

a backpropagation error approach computing the 

connection weights of multilayer feed-forward 

RBPN is generally used to update the hard 

learning task.The BP network can generalize well 

enough to produce the correct output for the 

training data set inputs. This research uses RBPN 

to simulate solar irradiance forecastings using 

statistical feature parameters as an input vector. 

Conditions dictate how long each series of input 

and output solar irradiance will last. The short-

term forecasting is for the next 24–72 hours. 

Reconstruction of an input vector in Figure 3 

leads to developing an RBPNSFP (RBPN-SFP) 

short-term forecasting model. Four layers make 

up this RBPN model: input layer, hidden layers 1, 

2, and output. Figure 3 depicts the model in its 

entirety. 
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𝐼𝑅𝐵𝑃𝑁 = [𝐺𝑠𝑎𝑣𝑔, 𝑇𝑂𝐷𝑚𝑎𝑥, 𝑁𝐷𝐷, 𝑇𝑎𝑣𝑔, 𝑛] … (1) 

Equation (1) determines the input vector, 

which includes the data sequence number n, three 

irradiance statistical feature parameters Gsavg(n), 

TODmax(n), and NDD(n), one ambient 

temperature statistical feature parameter Tavg(n), 

and three irradiance statistical feature parameters 

Gsavg(n), TODmax(n), and NDD(n), and one 

ambient temperature statistical feature parameter 

Tavg(n). The surface irradiance for the next day is 

represented by 24 components in the output 

vector (the data sequence number is n + 1). The 

time resolution for the output vector components 

is 1 hour. The values p and q denote the number 

of neurons in each of the two hidden layers in the 

RBPN model. The RBPN solar forecasting 

technique is described in full below. 

 

3.1.1 RBPN solar forecasting procedure 

Step 1: Create random weights in the range wmin, 

wmax and distribute them to hidden and outer layer 

neurons. Give the input layer's neurons all the 

same weight. 

Step 2: To contribute to the system, give the 

training data set D and determine the RBP error. 

𝑒 = 𝑉𝑟 − 𝑉𝑜𝑢𝑡 … (2) 

Where 𝑉𝑟 and 𝑉𝑜𝑢𝑡 are the objective 

function and the network outputs, respectively. 

Step 3: The constituents of Vout= (Vh) can be 

derived from each network output neuron as 

follows: 

𝑉ℎ = ∑ 𝑤𝑛ℎ𝑦𝑛
𝑁𝐻𝑖𝑑
𝑛=1  … (3) 

Where 

 𝑦𝑛 = ∑
𝑤𝑗𝑛

1+𝑒−𝑖𝑘𝑙

𝑁𝑙
𝑗=1  

 𝑁𝐻𝑖𝑑  = Quantity of hidden neurons 

 𝑤𝑛ℎ = Assigned weight of the n-h link of the 

network 

 𝑉ℎ = hth output neuron’s output 

 𝑦𝑛 = nth hidden neuron’s output. 

Step 4: Control the weight adjustment as follows 

based on the RBP error. 

                                      ∆𝑤 = 𝛾. 𝑉𝑜𝑢𝑡. 𝑒  
 … (4)         

Where, the knowledge function 𝛾, usually varies 

from 0.1 to 0.45.  

Step 5: Original weights should be regulated as 

follows: 

                        𝑤 = 𝑤 + ∆𝑤   … (5)  

  

Step 6: Repeat step (2) until the RBP error 

reaches the lowest value of 0.1. The network is 

well prepared to analyze any supplied unknown 

data after the instruction procedure is completed. 

The training method will be repeated multiple 

times to produce an averaged network used to 

create the Controlled final pulses. The wind zones 

will be further determined during the validation 

phase by applying controlled pulses to switches 

in the topology. 

Figure Σφάλμα! Δεν υπάρχει κείμενο 

καθορισμένου στυλ στο έγγραφο.. Flow Chart 

of RBPN solar Forecasting 

Resilient Back Propagation Neural 

Network's operation and parameters are depicted 

in Figure 4. They are almost identical, except for 

weight updating, which is a key difference 

between Resilient Propagation and Back 

Propagation. It's important to note that the partial 
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derivative (error gradient) is ignored in resilient 

propagation, and just the error gradient direction 

is used to determine the weight update direction. 

3.2 Resilient Backpropagation Neural 

Network-based Wind Power Forecasting  

For wind power forecasting, temperature 

and wind speed are very important parameters. 

Currently, temporary wind speed forecasts have 

become more important for power system 

management or energy trade owing to the wind 

energy technology and the growth of the wind 

energy market. In this new era, instant wind speed 

forecasting is required for producers and 

consumers to become stable electricity market as 

in electric grid at any moment, and the balance is 

maintained between consumption and generation. 

The wind power forecasts for a series of samples 

of wind power data using multi-layer RBPN are 

provided in this section. 

 
Figure 5. Block Diagram of Wind Power 

Forecasting System 

Figure 5 depicts the proposed wind 

power forecasting system's block diagram and 

design elements. Reduced costs and penalties, 

competitive information advantage and efficient 

project construction, operations and maintenance 

contribute to prediction processes in the context 

of energy trading in real-time and day-to-day 

markets.  

Figure 6. Network Architecture Of RBPN Based 

Wind Power Forecasting 

Figure 6 shows the network architecture 

of the RBPN-based wind power forecasting. 

Accurate wind power projections are important to 

reduce the frequency and duration of power 

outages, increase worker safety, and limit the 

physical consequences of bad weather on wind 

turbines. 

3.2.1 Resilient Backpropagation Neural 

Network Wind Forecasting Procedure 

An RBPN has three layers, as shown in 

Figure 6. An input set must be provided as a 

starting point for training the node. To gather sets 

of activation values of a node, the hidden layer 

multiplies the inputs of each by weight vectors in 

the next step. For each node, then, a function that 

transforms all of the inputs to the ideal value may 

be used as a way to determine their activation 

value. This will be done before applying the 

output as input to another layer. The Root Mean 

Squared Error (MSE) becomes reasonable. In 

other words, RBPN is trained in three steps such 

as  

i. Forward the input data  

ii. Compute and propagate error backward  

iii. Update the weights 

Two of RBPN's main characteristics are 

its ability to self-learn and self-organize. For the 

hidden and output layers, the most well-known 

functions are linear and sigmoid, respectively. As 

a result, equations (6) and (7) show the hidden 

layer's input and output values. Furthermore, 
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equations (8) and (9) contain all of the output 

layer's input and output values. 

𝑥𝑗 = ∑ ∑ 𝑤𝑖𝑗  × 𝑦𝑗 × 𝑦𝑗
ℎ
𝑗=1

𝑡−𝑛
𝑖=𝑡−1 + 𝑏𝑗 … (6) 

𝑦𝑗 =
1

1+𝑒𝑥𝑝(−𝑥𝑗)
 𝑗 = 1, … , ℎ … (7) 

𝑥𝑡 = ∑ 𝑤𝑖𝑡
𝑇
𝑡=1  × 𝑦𝑗 + 𝑎𝑡… (8) 

𝑦𝑡 =  𝑥𝑡  𝑡 = 1, … , 𝑇 … (9) 

Where, 

xj ,yj : input and output jth node in the hidden 

layer. 

wij : weight between input and hidden layer 

 bj, aj: Range of bias in input and hidden layer[-1, 

1].  

n, h, t: layer nodes. 

xt, yt: input and output value concerning time 

horizon t 

wij: Weights of the jth hidden and output layers' 

connections 

Following the idea stated above, the 

backpropagation technique for changing the 

network's weight vectors can be simplified using 

the gradient descent approach, which uses the 

squared error sum (The magnitude is the first 

priority in this work). When weights are adjusted 

to skip from the hidden to the input layer the 

output error, the MSE between network 

forecastings resulting in yt and predicted output 

�̂�𝑡 is reduced, as shown in equation (10). T is the 

number of iterations created based on the weight 

and bias groups. 

𝑀𝑆𝐸 =
1

2
∑ (�̂�𝑡−𝑦2)2𝑇

𝑡=1  … (10) 

The propagation process is described as 

(10), (11), (12), and (13) by adjusting the weights 

of hidden and input neurons (13). Because of the 

dependence of an error on other network parts, 

the procedure will be run as equation (7). 

∆𝜔𝑗𝑡𝛼 −
𝜎𝑀𝑆𝐸

𝜎𝜔𝑗𝑡
 … (11) 

∆𝜔𝑗𝑖 =  −η(
𝜎𝑀𝑆𝐸

𝜎𝑦𝑡
)(

𝜎𝑦𝑡

𝜎𝑥𝑡
)(

𝜎𝑥𝑡

𝜎𝜔𝑗𝑡
)𝑦𝑗 … (12) 

=  −η(�̂�𝑡 − 𝑦𝑡) (
σ(1+exp(−𝑥𝑡)))−1

𝜎𝑥𝑡
) … (13) 

= η(�̂�𝑡 − 𝑦𝑡)𝑦𝑡(1 − 𝑦𝑡)𝑦𝑗    … (14) 

For j =1… h for t=1,… T 

Where  

∂wjt: Hidden neuronal weights. 

 η: The rate of learning 
𝜎𝑀𝑆𝐸

𝜎𝑦𝑡
 : After activation, a derivative of the error 

𝜎𝑦𝑡

𝜎𝑥𝑡
 : The activation values after the total input 

vectors are derivative. 
𝜎𝑥𝑡

𝜎𝜔𝑗𝑡
 : Following the weights, the derivative of the 

total input vectors 

When the above equations are implemented, the 

following weight vectors for the hidden layers are 

chosen: 

∆𝜔𝑖𝑗 =  − ∑ [
𝜎𝑀𝑆𝐸

𝜎𝑦𝑡
)(

𝜎𝑦𝑡

𝜎𝑥𝑡
)(

𝜎𝑥𝑡

𝜎𝜔𝑗𝑡
)] ×𝑇

𝑡=1

(
𝜎𝑦𝑗

𝜎𝑥𝑗
)(

𝜎𝑥𝑗

𝜎𝜔𝑖𝑗
)𝑦𝑗  

                                     =  η ∑ [[(�̂�𝑡 −𝑇
𝑡=1

𝑦𝑡)𝑦𝑡(1 − 𝑦𝑡)𝜔𝑖𝑡 ] 𝑦𝑗(1 − 𝑦𝑗)𝑦𝑗  ….. (15) 

For i = t − n, ..., t − 1 for j = 1, ..., h                

 

 

 

                Figure. 7. Flowchart of the proposed 

wind Power forecasting method 

Figure 7 shows the flowchart of the proposed 

RBPN-based wind speed forecasting method. 
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This forecast separates the data into training, 

testing and validation. 

3.3 Impact of Solar and Wind Power Grid 

Integration 

In two areas, the implications on the 

system reliability, reliability, stability, power 

quality and safety of wind energy penetration are 

frequently studied. There are a number of 

consequences on power grids, including the 

ability to reverse electrical flows. 

3.3.1 Power Quality 

The voltage volatility and harmonic 

network distortion are impacted by the power 

quality. Wind power integration into the system 

affects the end-voltage user's quality. Many wind 

turbines are now employing power electronic 

variable speed wind turbines to save money. 

Power electronics improve power quality by 

reducing harmonic distortion. 

3.3.2 Transient Stability 

Traditional generators are intended to 

minimize voltage and frequency variations in 

order to satisfy fluctuating demand for load. 

Generators accelerate to bridge the gap between 

mechanical and electrical powers during a 

malfunction that generates voltage dips. They 

absorb reactive power when the fault is cleared, 

lowering the network voltage. There will be a 

voltage drop if there is not enough reactive power 

being delivered. Under low voltages, 

synchronized generator exciters enhance reactive 

power generation, aiding in voltage restoration. 

Induction generators, on the other hand, strive to 

prevent voltage recovery. Wind generating can 

cause a substantial generation deficit if high 

penetration is disconnected during low voltage 

depressions. To avoid this, wind farms are 

required to supply adequate demand power 

compensation. 

3.3.3 Voltage Control 

The nodal voltage of the power system is 

allowed to fluctuate between 5% and 7%. By 

delivering or absorbing reactive power, 

synchronous generators and other devices are 

utilized as compensators to modulate the nodal 

voltage. Induction generators nevertheless absorb 

reactive power and do not regulate reactive power 

flows. Because the wind farm network is largely 

capacitive, even variable-speed wind turbines 

cannot keep the voltage under the limit at the time 

of connection. The issue with voltage variation is 

caused by wind velocity and generator torque. 

The changes in actual and reactive power are 

directly connected to voltage variations. Under 

voltage is a frequent classification for voltage 

fluctuation: 

i. Voltage Sag/Voltage Dips 

ii. Voltage Surge 

iii. Short Interruptions 

iv. Long duration voltage variation 

The voltage flicker problem suggests that 

wind turbines or shifting loads caused dynamic 

network modifications. As a result of continuous 

operation, power fluctuation from wind turbines 

arises. The amplitude of voltage fluctuations is 

determined by the wind turbines' grid strength, 

network impedance, phase angle, and power 

factor. 

 

4. Simulation Results and 

Discussion 
The suggested system is simulated using 

the MATLAB2017a program. Table 1, table 2, 

and table 3 list the simulation parameters. The 

data for the suggested system was collected from 

a technical university campus in Rajasthan, 

India's northwest state [29]. 

Table 1. Monthly average meteorological data  

 

Solar irradiance and wind speed are 

summarized in Table 1. While the solar radiation 
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ranges from 4.140 to 7.440 kWh/m2/day daily, 

the annual average is 5.69kWh/m2/day. From 

2.410 to 4.68m/s, the monthly average wind 

speed in the study area is 3.29 m/s, with an annual 

average of 3.29 m/s. To make short-term 

forecastings, we use the PV module's technical 

data in Table.2. 

Table 2. Technical Data of PV module 

 

Table 3. Technical Data of Wind Turbine 

 

As shown in Table 3, the turbine's 

production specifications and economic issues 

are listed. Based on wind speed and power 

curves, wind energy is created in real time [29]. 

4.1 Forecasting Metrics Evolution - RBPN 

Mean Absolute Error (MAE) has been 

frequently used to assess forecast performance in 

regression issues and renewable energy business. 

Using the MAE measure, you can determine how 

accurate a forecasting is in terms of the overall 

accuracy of the forecast. A significant difference 

is that it does not punish larger forecasting errors 

like the Root Mean Square Error (RMSE). Lower 

MAE numbers indicate better forecasts. The 

MAE has the drawback that a big number of very 

small errors can rapidly overpower a small 

number of significant errors. In systems where 

extreme events are a worry, this scenario can be 

troublesome. The following formulae were used 

to determine the MAE and RMSE. 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑃�̂� − 𝑃𝑖|𝑁

𝑖=1  … (16) 

𝑅𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑃�̂� − 𝑃𝑖)2𝑁

𝑖=1  … (17) 

Where  

Pi = Actual Power Generation at ith time 

𝑃�̂� = Power Generation Estimated by Forecasting 

Model 

N = Number of Data evaluated 

Table 4: Comparison of Forecasting Interval 

Forecast of wind Power 

Metho

ds 

One Step 

Ahead 

One Day 

Ahead 

Trai

n 

Time  RMS

E 

(kW) 

MA

E 

(kW

) 

RMS

E 

(kW) 

MA

E 

(kW

) 

GA 

[29] 

1.88 8.72 10.19 8.35 60.1 

PSO 

[29] 

4.28 6.67 7.5 9.8 56.4 

SPES 

[29] 

5.30 5.12 6.52 10.9

8 

40.1

2 

RBPN 4.6 4.30 5.69 9.86 30.1 
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Figure.8 Comparison of Forecasting 

Interval Forecast of wind Power 
Table 4 and figure 8 illustrate the results 

of using alternative ways to check the forecast 

error for one step (10 minutes) and one day ahead, 

respectively. Apart from RBPN, Table 4 shows 

train time, Mean Absolute Error (MAE), and 

Root Mean Square Error (RMSE) for three 

different approaches: Genetic Algorithm (GA) 

[30], Particle Swarm Optimization (PSO) [31], 

and RBPN. Compared to the GA, PSO, and 

RBPN approaches, the proposed RBPN method 

produces the best results for all parameters. 

Table 5: Comparison of Forecasting Interval 

Forecast of Solar Power 

Metho

ds 

One Step 

Ahead 

One Day 

Ahead 

Trai

n 

Time  RMS

E 

(kW) 

MA

E 

(kW

) 

RMS

E 

(kW) 

MA

E 

(kW

) 

GA 

[29] 

5.53 5.50 12.32 7.65 23.4

3 

PSO 

[29] 

4.05 4.03 11.47 7.04 20.9

5 

SPES 

[29] 

3.76 3.71 10.21 7.79

8 

17.2

1 

RBPN 

[29] 

3.02 3.10 9.30 7.21 10.3

0 

 

 

Figure.9 Comparison of Forecasting Interval 

Forecast of Solar Power 

The RBPN model and other models' 

RMSE and MAE values for solar power forecast 

are compared in Tables 5 and 9. The findings 

show one-day and 10-minute forecasts, with 

RBPN achieving the lowest RMSE for one-day 

and one-step-ahead forecasts, outperforming 

other techniques again [29]. 

5. Conclusion  

The quality of the energy management 

system is crucial in the dispatch of renewable 

energy. The forecasting of wind and solar 

electricity is also an important factor. This 

research provides a Resilient Back Propagation 

Control algorithm for the forecasting system to 

tackle wind and solar power forecasting and 

increase forecasting capacity. When measuring 

simulation performance and comparing it to other 

machine learning approaches, RMSE and MAE 

indicators were employed to assess the control 

algorithm's efficacy presented in this work. Two 

existing algorithms were compared in this study: 

a Genetic Algorithm and Particle Swarm 

Algorithm. Training and testing data were 

separated from the projected simulation outcome 

in this investigation. The performance of MAE 

and RMSE calculations is evaluated using 
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training and testing data. The proposed wind 

forecasting has RMSE and MAE values of 4.60 

(one step ahead) and 4.30 (one step ahead), 

respectively. The proposed solar forecasting has 

RMSE and MAE values of 3.02 (one step ahead) 

and 3.10 (one step ahead), respectively. As a 

result, when compared to other approaches, the 

proposed RBPN produces the best outcomes 

under all operating conditions. The accuracy of 

hybrid solar and wind power plant operation, 

control, maintenance planning, and power 

estimation could all be improved in the future. 
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