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Abstract: This paper deals with a Gaussian process model-based short-term electric load forecasting using cuckoo
search. The Gaussian process model is a nonparametric model and the output of the model has Gaussian distri-
bution with mean and variance. The multiple Gaussian process models as every hour ahead predictors are used
to forecast future electric load demands up to 24 hours ahead in accordance with the direct forecasting approach.
The separable least-squares approach that combines the linear least-squares method and cuckoo search is applied
to train these Gaussian process models. The results of electric load forecasting for Kyushu district in Japan are
shown to demonstrate the effectiveness of the proposed forecasting method.
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1 Introduction

Recently, the independent power producers and the
distributed power generators have been increasing.
The power systems have been more complicated due
to the deregulation and liberalization of the electricity
market. It is necessary to forecast electric load de-
mand accurately to operate power systems with high
reliability, efficiency and economy. Electric load fore-
casting is very important for stable starting and halt-
ing of generators and reliable load distribution. So far,
many methods for electric load forecasting have been
developed using multi-layered neural network models
[1], fuzzy model [2], Kalman filter [3], H∞ filter [4],
and so forth. These methods are categorized into the
parametric forecasting. One needs many weighting
parameters to describe the nonlinearity, which makes
the training and structure determination of the predic-
tion model complicated. Moreover, any confidence
measures of predicted load demands are not given in
such forecasting methods.

To overcome these problems, this paper deals
with a direct method for short-term electric load fore-
casting in the Gaussian process (GP) framework. The
GP model was originally utilized for the regression
problem by O’Hagan [5], and has recently received
much attention for use in regression and classification
problems [6, 7]. Moreover, this model has been in-
troduced for the modeling of nonlinear dynamic sys-
tems [8, 9] and the time series forecasting [10, 11].

Since the GP model has fewer parameters than para-
metric models, we can easily describe the nonlinearity
between the input and output of the prediction model
by using a few parameters. The proposed forecast-
ing method gives the predicted electric load demands
and the uncertainties of the predicted values as well.
The information on the uncertainties of the predicted
electric load demands must be very useful for reliable
management of electric power system. Moreover, in
the proposed method, the forecasting is directly per-
formed by using the multiple trained GP models as
every hour ahead predictors. Therefore, the prediction
errors are not accumulated as the forecasting horizon
increases in the proposed forecasting method.

To perform electric load forecasting in the GP
framework, the GP prior models have to be trained
by minimizing the negative log marginal likelihood of
the training data. Unfortunately the cost function gen-
erally has multiple local minima, therefore, one has to
handle a nonlinear optimization method which is very
complicated. The gradient based optimization algo-
rithm still suffers from the local minima problem un-
less the initial guess is suitable. We applied the sep-
arable least-squares (LS) approach that combines the
linear LS method and genetic algorithm (GA) to this
problem [12]. However, the GA has many setting pa-
rameters and requires a complicated coding technique
and genetic operations. In this paper, the separable
LS approach that combines the linear LS method and
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cuckoo search (CS) is applied to train these GP mod-
els. The CS is a probabilistic search procedure, which
is inspired by the brood parasitic behavior of cuckoo
and the Lévy flight behavior of some birds [13]. The
CS consists of only the basic arithmetic operations
and does not require complicated coding and genetic
operations such as crossovers and mutations of the
GA. This algorithm has been empirically shown to
be very efficient for optimization [13, 14]. These ad-
vantages suggest that the use of the CS increases ef-
ficiency without deterioration of accuracy for electric
load forecasting. In the proposed training algorithm,
the hyperparameters of covariance functions are rep-
resented by the nests of host birds and the weighting
parameters of the prior mean function corresponding
to each candidate of hyperparameter, are estimated by
the linear LS method.

This paper is organized as follows. In section 2,
the problem of short-term electric load forecasting is
formulated. In section 3, the multiple GP prior mod-
els are derived for every hour ahead predictors. In sec-
tion 4, the training algorithm of the GP prior models
based on CS is proposed. In section 5, short-term elec-
tric load forecasting by the GP posterior distribution
is described. In section 6, the results of electric load
forecasting for Kyushu district in Japan are shown to
illustrate the effectiveness of the proposed method. Fi-
nally, some conclusions are given in section 7.

2 Statement of the Problem
Assume that a j-hours ahead electric load predictor is
described as

y(k + j) = fj(x(k)) + εj(k)

(j = 1, 2, · · · , 24)
x(k) = [y(k), y(k − 1), · · · , y(k − 23),

t(k), t(k − 1), · · · t(k − 23)]T

(1)

where k denotes the time, y(k) is the electric load at
the time k, and y(k + j) is the electric load at the j-
hours ahead from the time k. t(k) is the temperature at
the time k. fj(·) is a function which is assumed to be
stationary and smooth. εj(k) is zero mean Gaussian
noise with variance σ2

j .
The problem of this paper is to construct the fol-

lowing probability distributions for the multiple ahead
prediction

y(k + j)|x(k) ∼ N (ŷ(k + j), σ̂2(k + j))
(j = 1, 2, · · · , 24) (2)

and to carry out electric load forecasting up to 24
hours ahead based on these distributions, by using the
GP framework.

3 GP Prior Model
Putting k = ks, ks + 1, · · · , ks +N − 1 on (1) yields

wj = fj + εj (3)

where

wj = [y(ks + j), y(ks + j + 1),
· · · , y(ks + j +N − 1)]T

fj = [fj(x1), fj(x2), · · · , fj(xN )]T

εj = [εj(ks), εj(ks + 1),
· · · , εj(ks +N − 1)]T

X = [x1,x2, · · · ,xN ]T

= [x(ks),x(ks + 1), · · · ,x(ks +N − 1)]T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(ks) y(ks + 1)
y(ks − 1) y(ks)

...
...

y(ks − 23) y(ks − 22)
t(ks) t(ks + 1)

t(ks − 1) t(ks)
...

...
t(ks − 23) t(ks − 22)

· · · y(ks +N − 1)
· · · y(ks +N − 2)

· · · ...
· · · y(ks +N − 24)
· · · t(ks +N − 1)
· · · t(ks +N − 2)

· · · ...
· · · t(ks +N − 24)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(4)
wj and fj are the vector of model outputs and the vec-
tor of function values for the j-hours ahead predictor,
respectively. X is the model input matrix and is com-
mon for every hour ahead predictors. {X,wj} is the
training input and output data for the j-hours ahead
predictor.

A GP is a Gaussian random function and is com-
pletely described by its mean function and covariance
function. We can regard it as a collection of random
variables which has joint multivariable Gaussian dis-
tribution. Therefore, the vector of function values fj
can be represented by the GP as

fj ∼ N (mj(X),Σj(X,X)) (5)

where mj(X) is the N -dimensional mean function
vector and Σj(X,X) is the N -dimensional covari-
ance matrix evaluated at all pairs of the training input
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data. Equation (5) means that fj has a Gaussian dis-
tribution with the mean function vector mj(X) and
the covariance matrix Σj(X,X).

The mean function is often represented by a poly-
nomial regression [7]. In this paper, the mean function
vector mj(X) is expressed by the first order polyno-
mial, i.e. a linear combination of the model input:

mj(X) = [mj(x1),mj(x2), · · · ,mj(xN )]T

= X̃θj
(6)

where X̃ = [X, e], e = [1, 1, · · · , 1]T is the N -
dimensional vector consisting of ones, and θj =
[θj0, θj1, · · · , θj48]T is the unknown weighting param-
eter vector of the mean function to be trained.

The covariance matrix Σj(X,X) is constructed
as

Σj(X,X) =

⎡
⎢⎢⎣

Σj(1,1) · · · Σj(1,N)
...

. . .
...

Σj(N,1) · · · Σj(N,N)

⎤
⎥⎥⎦ (7)

where the element Σj(p,q) = cov(fj(xp), fj(xq)) =
sj(xp,xq) is a function of xp and xq. Under the as-
sumption that the process is stationary and smooth,
the following Gaussian kernel is utilized for Σj(p,q):

Σj(p,q) = sj(xp,xq)

= ρ2j exp

(
−||xp − xq||2

2�2j

)
(8)

where ρ2j is the signal variance, �j is the length scale,
and || · || denotes the Euclidean norm. The free param-
eters ρj and �j of (8) and the noise standard deviation
σj are called hyperparameters and construct the hy-
perparameter vector hj = [ρj , �j , σj ]

T. ρj can control
the overall variance of the random function fj(·) and
determines the magnitude of the function fj(·). �j can
change the characteristic length scale so that the axis
about the model input changes.

Since wj is noisy observation, we have the fol-
lowing GP model for j-hours ahead prediction from
(3) and (5) as

wj ∼ N (mj(X),Kj(X,X)) (9)

where

Kj(X,X) = Σj(X,X) + σ2
j IN

IN : N ×N identity matrix
(10)

In the following, Σj(X,X) and Kj(X,X) are writ-
ten as Σj and Kj , respectively.

4 Training of GP Prior Model by CS
To perform electric load forecasting, the proposed di-
rect approach needs 1 to 24 hours ahead prediction
models. The accuracy of forecasting greatly depends
on the unknown parameter vector ϑj = [θT

j ,h
T
j ]

T

and therefore ϑj has to be optimized. This training is
carried out by minimizing the negative log marginal
likelihood of the training data:

J(ϑj) = − log p(wj |X,ϑj)

=
1

2
log |Kj |+ 1

2
(wj −mj(X))TK−1

j

×(wj −mj(X)) +
N

2
log(2π)

=
1

2
log |Kj |+ 1

2
(wj − X̃θj)

TK−1
j (wj − X̃θj)

+
N

2
log(2π)

(11)
Since the cost function J(ϑj) generally has multiple
local minima, this training problem becomes a nonlin-
ear optimization one. However, we can separate the
linear optimization part and the nonlinear optimiza-
tion part for this optimization problem. The partial
derivative of (11) with respect to the weighting pa-
rameter vector θj of the mean function is as follows:

∂J(ϑj)

∂θj
= −X̃TK−1

j wj + X̃TK−1
j X̃θj (12)

Note that if the hyperparameter vector hj of the co-
variance function is given, then the weighting param-
eter θj can be estimated by the linear LS method
putting ∂J(ϑj)/∂θj = 0:

θj = (X̃TK−1
j X̃)−1X̃TK−1

j wj (13)

However even if the weighting parameter vector θj is
known, the optimization with respect to hyperparam-
eter vector hj is a complicated nonlinear problem and
might suffer from the local minima problem. There-
fore, in this paper, we propose a method that combines
the linear LS method with CS based on the idea of the
separable LS approach. The candidates of hyperpa-
rameter vector hj of the covariance are represented by
the nests of host birds and searched for by CS, where
the candidates of the weighting parameter vector θj
are estimated by the linear LS method. The proposed
training algorithm is described as follows:

step 1: Initialization for training
Set j = 1 and let the training input data be X .

step 2: Preparation of training output data
Let the training output data be wj .

step 3: Initialization for CS
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Generate an initial population of Q host nests
Ωj[i] (i = 1, 2, · · ·Q) for the hyperparameter vector
hj[i] randomly. Set the iteration counter l to 0.

step 4: Construction of covariance matrix
Construct Q candidates of the covariance matrix

Kj[i] using hj[i] (i = 1, 2, · · ·Q).

step 5: Estimation of θj
Estimate Q candidates of the weighting parame-

ter vector θj[i] of the mean function corresponding to
hj[i] (i = 1, 2, · · ·Q) from (13).

step 6: Evaluation value calculation
Calculate the negative log marginal likelihood of

the training data:

J[i](Ωj[i]) = − log p(wj |X,ϑj[i])

=
1

2
log |Kj[i]|+

1

2
(wj − X̃θj[i])

TK−1
j[i]

×(wj − X̃θj[i]) +
N

2
log(2π)

(i = 1, 2, · · · , Q)

(14)

where ϑj[i] = [θT
j[i],h

T
j[i]]

T.

step 7: Update of host nests
(7-1) Determine the new host nests Vj[i] (i =
1, 2, · · ·Q) by Lévy flights:

Vj[i] = Ωj[i] + αdj[i] (15)

where α > 0 is the step size and dj[i] is a random
value vector which follows a Lévy distribution:

p(dj[i]) = d−λ
j[i] (1 < λ ≤ 3) (16)

(7-2) Calculate the evaluation values J[i](Vj[i]) (i =
1, 2, · · ·Q) in the same way as step 4 ∼ step 6.
(7-3) If J[i](Ωj[i]) > J[i](Vj[i]), update Ωj[i] with
Vj[i].

step 8: Reconstruction of host nests
Reconstruct the host nest randomly when the host

bird discovers a cuckoo’s egg in her nest with proba-
bility Pa.

step 9: Repetition for CS
Set the iteration counter to l = l + 1 and go to

step 4 until the prespecified iteration number lmax.

step 10: Determination of the GP prior model
Construct the suboptimal prior mean and prior

covariance for the j-hours ahead predictor by us-
ing ϑj[best] = [θT

j[best],h
T
j[best]]

T = [θT
j[best],

ρj[best], �j[best], σj[best]]
T with the best evaluation

value over all the past iterations:

mj(x) = [xT, 1]θj[best] (17)

⎧⎪⎪⎨
⎪⎪⎩

sj(xp,xq) = ρ2j[best] exp

(
−||xp − xq||2

2�2j[best]

)

kj(xp,xq) = sj(xp,xq) + σ2
j[best]δpq

(18)
where sj(xp,xq) is an element of the covariance ma-
trix Σj , kj(xp,xq) is an element of the covariance
matrix Kj , and δpq is a Kronecker delta which is 1 if
p = q and 0 otherwise.

step 11: Repetition for the GP prior model
If j < 24 then j = j + 1 and go to step 2.

5 Electric Load Forecasting by GP
Model

In section 4, we have already obtained the GP prior
models for j (j = 1, 2, · · · , 24) hours ahead predic-
tors. In the proposed direct approach, short-term elec-
tric load forecasting up to 24 hours ahead is carried
out directly using every GP prior models.

For a new given test input x∗ = x∗(k) =
[y∗(k), y∗(k − 1), · · · , y∗(k − 23), t∗(k), t∗(k −
1), · · · , t∗(k − 23)]T and corresponding test output
y∗(k + j) (j = 1, 2, · · · , 24), we have the following
joint Gaussian distribution:[

wj

y∗(k + j)

]
∼

N
([

mj(X)
mj(x∗)

]
,

[
Kj Σj(X,x∗)

Σj(x∗,X), sj(x∗,x∗) + σ2
j[best]

])
(j = 1, 2, · · · , 24)

(19)
where Σj(X,x∗) = ΣT

j (x∗,X) is the N -
dimensional covariance vector evaluated at all pairs
of the training and test data. sj(x∗,x∗) is the vari-
ance of the test data. Σj(X,x∗) and sj(x∗,x∗) are
calculated by the trained covariance function (18).

From the formula for conditioning a joint Gaus-
sian distribution, the posterior distribution for a spe-
cific test data is

y∗(k + j)|X,wj ,x∗ ∼ N (ŷ∗(k + j), σ̂2∗(k + j))

(j = 1, 2, · · · , 24)
(20)

where

ŷ∗(k + j) = mj(x∗)
+Σj(x∗,X)K−1

j (wj −mj(X))

σ̂2∗(k + j) = sj(x∗,x∗)
−Σj(x∗,X)K−1

j Σj(X,x∗) + σ2
j[best]

(21)

are the predictive mean and the predictive variance at
the j-hours ahead, respectively. It is noted that the
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Figure 1: Electric load forecasting result (January,
2016)
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Figure 2: Electric load forecasting result (April, 2016)

nonlinearity of the predictive mean can be expressed
by the trained hyperparameters even if the prior mean
function is set to be a linear combination of the input
as (6).

6 Electric Load Forecasting for
Kyushu District in Japan

Short-term electric load forecasting is performed for
Kyushu district in Japan using the proposed fore-
casting method. The training data is downloaded
from the Denki Yohou (Electricity Forecast) re-
leased by Kyushu Electric Power Company [15] and
Past Weather Data released by Japan Meteorologi-
cal Agency [16]. The electric load demands in 2015
are utilized for training data. The temperature in
Fukuoka, the central city of Kyushu district, is also
used for training data. The number of the training in-
put and output data is taken to beN = 649 for training
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Figure 3: Electric load forecasting result (July, 2016)
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Figure 4: Electric load forecasting result (November,
2016)

each j (j = 1, 2, · · · 24) hours ahead predictor. Elec-
tric load forecasting up to 24 hours ahead is carried
out for each season. The design parameters of CS are
given as follows:

nest size: Q = 30
egg discovery probability: Pa = 0.125
termination criteria: lmax = 50

Figures 1-4 show the results of electric load fore-
casting on January, April, July, and November, in
2016, respectively. They are typically chosen from
4 seasons. Although the predicted electric demands
on January have small errors to the actual demands,
the predicted electric demands on April, July, and
November are quite close to the actual demands.
Moreover, the 95.5% confidence regions are quite rea-
sonable for all seasons. Note that these uncertainties
for the predicted electric demands are usually not ob-
tained by the non-GP-based method such as the neu-
ral network model-based method. Since the proposed
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forecasting method gives not only the predicted elec-
tric demands but also the uncertainties, we can practi-
cally utilize the upper value of the confidence region
ŷmax(k+j) = ŷ∗(k+j)+2σ̂∗(k+j) as the maximum
value of the predicted electric demand. This informa-
tion must be very useful for management of electric
power system.

7 Conclusions

In this paper, a GP model-based short-term electric
load forecasting has been proposed. The short-term
electric load forecasting has been carried out directly
by using multiple GP model as every hour ahead
predictors. The separable LS approach combining
the linear LS method with CS has been proposed to
train the GP prior model. The hyperparameters of
covariance functions are represented by the nests of
host birds and the weighting parameters of the prior
mean function corresponding to each candidate hy-
perparameter, are estimated by the linear LS method.
Forecasting results show that the proposed forecast-
ing method can give accurate predicted electric load
demand and the uncertainty of the predicted values as
well. This information on the uncertainties of the pre-
dicted electric load demands must be very useful for
reliable management of electric power system. De-
velopment of the forecasting method that is taking an-
other weather data and type of date (weekday or holi-
day) into consideration is one of the future works.
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