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Abstract: - The proliferation of power electronic based nonlinear loads and time varying devices causes 
harmonic pollution in industrial power system in recent years. The harmonic distortion can cause overheating 
and increased losses in the equipments used in distribution system and also interference with the 
communication systems. This paper presents a new soft computing technique based on an adaptive wavelet 
neural network (AWNN) for harmonic distortion measurement. Wavelet Neural Network (WNN) is a new 
technique recently proposed for harmonic distortion monitoring. In this work, Mexican hat wavelet has been 
selected for activation function in the hidden layer of the network. The validation of proposed AWNN is 
examined with feed forward back propagation network (FFBPN). The proposed method has been verified that 
the improved estimation accuracy and low computational time, when compared to the FFBPN. 
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1 Introduction 
The increasing use of power semiconductor based 
electronic devices such as variable frequency drives, 
inverters and solid state switching devices causes 
voltage distortions, harmonics, power frequency 
variations and voltage fluctuation in power system. 
The power quality problems cause system 
equipment malfunction, computer data loss and 
memory malfunction of the sensitive equipment 
such as, programmable logic devices controls, 
protection and relaying equipment. Recently, 
harmonics has become a key issue due to the 
widespread use of power semiconductor based 
devices. Harmonic disturbances come generally 
from equipment with nonlinear voltage/current 
characteristics. The nonlinear load characteristics 
inevitably change the sinusoidal nature of the AC 
current, resulting in the flow of the harmonic current 
in the power system. The major consequences are 
the heating of induction motors, transformers, 
capacitors and the overloading of neutral [1].  

In general, total harmonic distortion (THD) is the 
key factor to be considered and can be measured for 
the quality of the power system. The term expresses 
the distortion as a percentage of the fundamental of 
the voltage and current waveform. 

When the issues of measuring the defined indices 
began to be considered, fast Fourier transform (FFT) 
is the conventional method accepted for measuring 

the THD in the power system quality for the past 
decades. It has been reported that the accuracy of 
FFT measurement is found that, it is only depends 
on the power system frequency variations. The 
disadvantage of FFT is suffered from spectral 
leakage and the picket fence, which affects the 
accuracy of measurement. Windowing, Interpolation 
and synchronization techniques [2-4] were 
suggested to get over the defects of FFT, but those 
come at the expense of additional computational 
burden. Wavelet transform is reported as easy 
implementation solution for harmonic distortion 
measurement, but it offers very high computational 
burden and also faces delays due to inherent filter 
banks used [5]. To attain better frequency 
resolution, Prony models and estimation of signal 
parameters via rotational invariance technique 
(ESPRIT) [6-7] were proposed. However, these 
models are sensitive to modeling inaccuracies and 
demands more computational cost. To achieve faster 
processing speed, artificial intelligence based 
techniques, namely, Kalman filtering, adaptive 
linear neuron (ADALINE), multilayer perceptron 
neural network (MPNN), radial basis function 
neural network (RBFNN) were popularly used. 
Though, artificial neural network (ANN) based  
techniques are particularly suitable for  dealing with 
the non linear characteristics and are immune to 
noise present in the signal, also they often settle in 
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local minima or converge slowly due to their 
multilayered structure [8-10]. 

This paper introduces an adaptive wavelet neural 
network (AWNN) technique for harmonic distortion 
measurement. For this work, Mexican hat wavelet 
has been chosen for activation function (wavlons) in 
the hidden layer of the network. The learning ability 
of the AWNN provides faster and accurate estimates 
with reduced training time. 

This paper is organized as follows. Section 2 of 
this paper describes the problem formulation of 
harmonic distortion measurement for three phase 
supply systems. In section 3, the performance of the 
proposed scheme is demonstrated with the simulated 
model. Section 4 describes the comparisons of the 
various neural networks results and errors are given 
with the advantages of the proposed scheme. Finally 
conclusions are drawn in section 5. 
 
 

2. Problem Formulation 
 

 
Fig. 1.  Block diagram of test circuit. 
 
The performance of the proposed technique is 
verified with the help of a simple three phase test 
circuit is shown in Fig. 1. Fig.2 shows the 
simulation circuit.  

 
Fig. 2.  Simulation circuit. 
 

The test circuit consists of three non linear loads 
(two DC drives and one converter with resistive 
load) and two linear loads (two induction motors) 
are fed by a purely sinusoidal power supply. Table 1 
shows the details of the connected loads with a 400 
V, 50 Hz, 3 phase AC source. 

 

Table1 Test Circuit Parameters 
Items Load Type Load Specifications 

Load 1  Thyristor D.C Drive 
5HP, 500 V, 1750 
RPM, Field 300 V 

Load 2 Thyristor D.C Drive 
20HP, 500 V, 1750 
RPM, Field 300 V 

Load 3 Thyristor D.C Drive 
20HP, 500 V, 1750 
RPM, Field 300 V 

Load 4 Nonlinear load 
(converter with 
resistive load) 

5.4 HP,400 V,50 Hz, 
1430 RP M 

Load 5 Induction Motor 10 HP,400 V,50 Hz, 
1430 RPM  

 
A nonsinusoidal periodic voltage or current 

signal can be decomposed into a sum of sinusoidal 
components as given below. 
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Where t is the time, h is the harmonic order, and 

fh, Ah and θh are the frequency, amplitude and phase 
angle of the hth component, respectively. 

The total harmonic distortion (THD) is the 
common index employed to find out the quality of 
current and voltage signal.  
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Where Ih represents the individual harmonics and 

I1 is the fundamental component of the signal. 
 
 
3. Adaptive wavelet neural network 
 
3.1 Structure of an AWNN 
An adaptive wavelet neural network (AWNN) is a 
multilayer feed forward neural network and having 
three layers such as input layer, hidden layer and 
output layer. It is a new network combining the 
ideas of the feed forward neural networks and the 
wavelet decompositions, Zhang and Benveniste 
(1992) provide an alternative to the feed forward 
neural networks for approximating functions. In the 
input layer, an informative n-dimensional input is 
given. The neurons in the hidden layer can also be 
called as wavelons, which constitutes wavelet 
function. In the output layer the approximation of 
the target values are estimated. The direct weighted 
links helps in achieving smooth input to output 
mapping [11]. Many significant works have been 
done using adaptive wavelet neural network [12-
14]. Hence, in this work, the excellent features of 
the AWNN [15] is attempted to estimate harmonic 

Load 1 

Load 2 

Load 3 

Load 4 

Load 5 

Supply Impedance 

Supply 
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distortion. The basic network structure of an 
adaptive wavelet neural network is shown in Fig. 3.  
 

 
Fig. 3.  Basic AWNN structure 
 

In this paper, Mexican hat wavelet is used for 
activation function in the hidden layer of the 
network. Out of the various mother wavelets such as 
Morlet, Meyer, Haar, Gaussian, Mexican hat, B-
Spline, Daubechies, the Mexican hat wavelet 
function is chosen because it is computationally 
efficient and it has an analytical expression. For a 
single dimensional input vector x, Mexican hat 
wavelet function is defined as 

  25.02 )1( tett                                          (3) 

Where t is the norm of vector x,
 pq

pqpx
t



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Where λpq and δpq is the translation and dilation 
parameter of the qth wavelons for the pth input. 

The kth output of the adaptive wavelet neural 
network can be expressed as 
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Where w and v are the weights of the connections 
between the input and output layers and between the 
hidden and output layers respectively. bk is the bias 
of the kth output neuron. The AWNN has better 
approximation property as compared to the 
conventional feed forward back propagation 
network (FFBPN), due to the adapting the wavelet 
shape in accordance with training data set. 
 
3.2 Training of an AWNN  
The process of modifying the weights in the 
connections between the network layers with the 
objective of achieving the expected output is called 
training a network. The internal process that takes 
place when a network is trained is termed as 
learning. Moreover, training is done to enable the 
iterative update of the parameters used in the 
network. In this paper, the standard gradient decent 
based back propagation algorithm is used due to its 
simplicity and the ability to update each parameter 
simultaneously.  In order to ensure faster learning, 
adaptive learning rate is used in the training. The 
training objective function of an adaptive wavelet 

neural network is derived from the instantaneous 
total mean square error, expressed as  
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    (5) 
Where yn’ and yn are the desired and actual 

output of the nth output neuron of the network, 
respectively. Whereas, N is the number of output 
neurons. The minimization of the above function is 
carried out during training of the proposed network. 
The AWNN parameters are updated in each iteration 
using the following generalized expression. 

))1(()(()()1(  nnnn   											(6)	
Where n is the iteration count, αβ and ηβ 

representing the momentum coefficient and the 
learning rate. Here, β represents a free parameter (w, 
v, b, λ or δ).  

The AWNN free parameters are updated and the 
output of the for kth pattern can computed using the 
following equation [12] 
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   (7) 
Where w and v represent the weights of the links 

connected between the input and output layers and 
weights of the links connected between the wavelet 
layers and output layers. ψs is the output of the sth 
hidden neuron and bk is the bias of the kth output 
neuron. The process of network learning is stopped 
when the objective function is converged to a 
predefined value εth. 
 
3.3 Network initialization  
The proper initialization of the network parameters 
would considerably increase the efficiency of the 
training. The effective initialization would result to 
less iteration in the training phase of the network. 
The network initialization means the proper 
selection of initial parameter values of the AWNN 
parameters such as learning rate and the number of 
hidden units. The input to output connection weights 
w, bias b and the hidden to output connection 
weights are initialized randomly within the 
constraints. The minimum number of wavelons is 
adopted in the network such that it does not account 
to computational burden and output accuracy.  

A moderate value of learning rate is chosen 
initially to improve convergence speed and the 
numerical stability of the learning phase. 

An optimal threshold value εth is chosen for 
obtaining lesser computational time and better 
output accuracy. Table 2 provides the training 
parameter values of the AWNN. 

In the simulations, the configuration of the BPN 
and AWNN uses 99 input neurons (only a half cycle 
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of the distorted signal) and the network produces 
one output neuron that represents the current 
harmonic distortion in supply side.  
 
Table 2  Training Parameter Values for the 
AWNN 

Network parameters 

Number of wavelons 3 

Wavelet function Mexican hat 

Training parameters 

Learning rate for translation ηλ 0.2 

Learning rate for dilation ηδ 0.2 

Learning rate for IO weights ηw 0.01 

Learning rate for bias ηb 0.01 

Threshold cost function value εth 0.005 

IO: Input to output layer; HO: Hidden to output layer  

 
From the results, the current harmonic distortions 

are easily evaluated without disconnecting any loads 
from the power system. The results obtained were 
compared with the feed forward back propagation 
neural network. 

The performance of the proposed technique for 
harmonic distortion measurement can be confirmed 
by using target and estimated THD values. Fig. 4 
shows the measured current waveform in the supply 
side. Fig. 4(a) represents the frequency spectrum of 
Fig. 4. 

 
Fig. 4.  Input current waveform. 

 

 
Fig.4(a) FFT spectrum of Fig.4 

 
Table 3 gives the comparison of simulated results 

with the actual THD values and error for the phases 
A, B and C. From Table 3, the true harmonic 
distortions in supply side are easily evaluated 
without disconnecting any load. 

Table 3   Comparison of THD Values. 

Phases 
Actual 
value 

(in THD) 

Predicted value 
(in THD)

Error value 
(in THD)

FFBPN AWNN FFBPN AWNN 

Phase A 42.4400 42.6454 42.4394 -0.2054 0.00010 

Phase B 42.8500 43.2014 42.8490 -0.3514 0.00100 

Phase C 42.3600 43.5754 42.3598 -0.0166 0.00020 

 
From Table 3, it is to be noted that the total 

harmonic distortion in supply side is 42.44 % in 
phase A. however the target THD is set as 42.44 %, 
BPN estimates 42.6454 % and the proposed AWNN 
method estimates 42.4394 %. The error value also 
calculated between the actual THD value and its 
estimated THD values. The calculated error values 
of FFBPN and AWNN are -0.2054 and 0.00010. 
Therefore, the proposed Mexican hat wavelet with 
ANN method is also capable to predict the system 
performance correctly, validating its accuracy. 

 
Table  4  Comparison of Computational 

Time and Training Epochs 

Phases 
Computational time  

(in seconds) 
Training epochs 

FFBPN AWNN FFBPN AWNN 
Phase A 18.147729 0.709005 976 21 

Phase B 18.445982 0.794059 945 24 

Phase C 17.505242 0.705268 927 19 

 
Table 4 shows the comparison of computational 

time and training epochs. From Table 4, it can be 
observed that, the computational time of the 
proposed method is lower than that of the FFBPN. 
The computational times for FFBPN are 18.147729, 
18.445982 and 17.505242 seconds for the phases A, 
B and C. The computational times for AWNN are 
0.709005, 0.794059 and 0.705268 seconds for the 
phases A, B and C.  Table 4 also represents the 
comparison of training epochs between BPN 
network and AWNN network. Fig. 5 represents the 
computational time plot obtained in phases A, B and 
C. 

 
Fig. 5.  Computational time for phases A, B 

and C 
Fig. 6 shows the training epochs plot obtained in 

phases A, B and C. The BPN network takes 976, 
945 and 927 iterations and also AWNN takes the 
training epochs are 21, 24 and 19. From Fig. 6, the 

FFBPN; Phase  
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FFBPN; Phase  
B; 18,445982

FFBPN; Phase  
C; 17,505242

AWNN; Phase  
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AWNN; Phase  
B; 0,794059

AWNN; Phase  
C; 0,705268C
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AWNN has very low training iterations compared 
with BPN.  

 
Fig. 6. Training epochs for the phases A, B 

and C 
 

The proposed technique can also be verified in the 
practical environment. This is achieved by adding 
one number of harmonic source at the supply side. 
Fig.7 shows the test circuit with a harmonic 
source is connected in the utility side 

 

 
Fig. 7. Test circuit with a harmonic source 

connected in utility. 
 

 In this case, the voltage harmonic distortion 
is increased from 0.59% to 0.91% and the 
current harmonic distortion is decreased from 
42.44% to 42.35% in phase A. 

  
Table 5   Comparison of THD Values 

Phases 
Actual 
value 

(in THD) 

Predicted value 
(in THD)

Error value 
(in THD)

FFBPN AWNN FFBPN AWNN 

Phase A 42.3600 42.3916 42.3595 -0.0316 0.0005 

Phase B 42.6200 43.7195 42.6199 -1.0995 0.0001 

Phase C 42.6700 43.0074 42.6693 -0.3374 0.0007 

 
The proposed neural networks are again 

utilized and the true current harmonic 
distortions at supply side are identified. Table 5 
indicates the comparison of THD measurement 
and error between FFBPN and AWNN in 

practical environment  
Table 6 shows the comparison of relative error in 

measurement between AWNN and other 
experimental results (Joy Mazumdar et al., 2007). 
The relative error [16] is the new parameter which is 
used to examine the performance of the AWNN 
based harmonic distortion monitoring on the 
simulated signals.  

 Relative error = %








P

TP

THD	
THD	‐THD  

Where THDT  is the True current THD value 
measured at the point of common coupling (PCC) 
and THDP is the predicted current THD value. The 
relative error is calculated for the proposed 
AWNN method and compared with the Back 
Propagation Neural network (BPN) and 
Recurrent Neural Network. The accuracy of the 
proposed AWNN method is determined based 
on the relative error in measurement (er). From 
Table 6 , the estimated relative error for the 
proposed AWNN method is very less compared 
with BPN and RNN methods. 
 

4 Conclusion 
The effectiveness of an adaptive wavelet neural 
network in terms of accuracy, robustness and time 
efficiency is tested on a simulated signal and 
implemented on MATLAB platform. 

The proposed neural network method was able to 
evaluate the harmonic content of the currents 
efficiently in the three phase system. The estimation 
of harmonic distortion in the power system forms 
the basis in the field of harmonic filter design. The 
accuracy and computational complexity are the two 
main features that determine the effectiveness of 
any harmonic distortion estimation technique. The 
fast Fourier transform is used widely to obtain the 
harmonic spectrum. The proposed adaptive wavelet 
neural network uses wavelet coefficients, therefore, 
reduces the training time and its estimation accuracy 
is not affected by local variations in the signal due 
to practical scenarios. When compared to 
conventional fast Fourier transform and back 
propagation neural network whose activation 
function is sigmoid, the results confirms the 
improved estimation accuracy of adaptive wavelet 
neural network in the presence of frequency 
deviation and noise. The computational time of 
AWNN is considerably low, which makes it suitable 
for online application in power quality metering 
equipment. 

Table 6: Comparison of proposed AWNN with other works (Joy Mazumdar et al., 2007) 

FFBPN; 
Phase  A; 

976

FFBPN; 
Phase  B; 
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RNN Method   (Joy Mazumdar et al., 2007) Proposed AWNN Method 

Experimenta
l results 

Actual 
current 
value 
 (in THD) 

Predicted  
current  
value  
(in THD) 

Relative 

Error 

(er) 

Simulation 
Results 
 

Actual 
current value  
( in THD) 

Predicted current 
value (in THD) 

Relative Error 

(er) 

FFT BPN FFT BPN AWNN BPN AWNN 

Triac with 0o 

Firing angle 
6.11% 4.18% -46.17% Phase A 42.4400 42.6454 42.4394 0.4816% -0.0014 % 

Triac with 
30o Firing 

angle 
29.25% 30.58% 4.35% Phase B 42.8500 43.2014 42.8490 0.8133% -0.00233 % 

Phase A of 
Variable 

Speed Drive 
(VSD) 

74.27% 66.69% -11.37% Phase C 42.3600 43.5754 42.3598 2.7891% 
-

0.000472% 

 
References: 
[1] V. E. Wagner, J.C Balda, D.C.Griffith, 

A.McEachern. Effects of harmonics on 
equipment. IEEE Transactions on Power 
Delivery, Vol.8, No.2, 1993, pp. 672-680.  

[2] H. Wen, Z. Teng, Y. Wang, and X. Hu. 
Spectral correction approach based on desirable 
sidelobe window for harmonic analysis of 
industrial power system. IEEE Transactions on 
Industrial Electronics, Vol.60, No.3, 2013, pp.  
1001-1010. 

[3] K. Fu Chen and S. L. Mei. Composite 
interpolated fast Fourier transform with 
Hanning window. IEEE Transactions on 
Instrumentation and Measurement, Vol.59, No. 
6, 2010, pp. 1571-1579. 

[4] Ferrero, R. Ottoboni. High-accuracy Fourier 
analysis based on synchronous sampling 
techniques. IEEE Transactions on 
Instrumentation and Measurement, Vol.41, 
No.6,  1992,  780–785. 

[5] J. Barros and R. I. Diego. Analysis of 
harmonics in power systems using the wavelet 
packet transform. IEEE Transactions on 
Instrumentation and Measurement,Vol.57, 
No.1, 2008, pp. 63-69. 

[6] Z. Leonowicz, T. Lobos and J. Rezmer. 
Advanced spectrum estimation methods for 
signal analysis in power electronics, IEEE 
Transactions on Industrial Electronics, Vol.50, 
No.3, 2003, pp. 514–519. 

[7] Y. H. Gu and M. H. J. Bollen. Estimating 
interharmonics by using sliding-window 
ESPRIT, IEEE Transactions on Power 
Delivery, Vol.23, No.1, 2008, pp. 13–23.  

[8] C. I. Chen, G. W. Chang, R. C. Hong and H. 
M. Li. Extended real model of Kalman filter for 
time varying harmonics estimation. IEEE  
Transactions on Power Delivery, Vol.25, No.1, 
2010, pp. 17–26.  
 

[9] C. I. Chen, Virtual multifunction power quality 
analyzer based on adaptive linear neural 
network. IEEE Transactions on Industrial 
Electronics, Vol.59, No.8, 2012, pp. 3321–
3329. 

[10] G. W. Chang, C. I. Chen, and Y. F. Teng, 
Radial basis function based neural network for 
harmonic detection. IEEE Transactions on 
Industrial Electronics, Vol.57, No.6, 2010, pp.  
2171–2179. 

[11] Q. Zhang and A. Benveniste, Wavelet 
networks. IEEE Transactions on Neural 
Network, Vol.3, No.6, 1992, pp. 889–898. 

[12] N. M. Pindoriya, S. N. Singh, and S. K. Singh, 
An adaptive wavelet neural network based 
energy price forecasting in electricity markets, 
IEEE Transactions on Power Systems, Vol.23, 
No.3, 2008, pp. 1423–1432.  

[13] S. H. Ling, H. Iu, F. H. F. Leung and K. Y. 
Chan, Improved hybrid particle swarm 
optimized wavelet neural network for modeling 
the development of fluid dispensing for 
electronic packaging, IEEE Transactions on 
Industrial Electronics, Vol.55, No.9, 2008, pp. 
3447–3460. 

[14] W. Chen, C. Pan, Y. Yun, and Y. Liu, Wavelet 
networks in power transformers diagnosis 
using dissolved gas analysis. IEEE 
Transactions on Power Delivery, Vol.24, No.1, 
2009, pp.  187–194. 

[15] S. K. Jain and S. N. Singh, Low Order 
Dominant harmonic estimation using adaptive 
wavelet neural network. IEEE Transactions on 
Industrial Electronics, Vol.61, No.1, 2014, pp. 
428–435. 

[16] J.Mazumdar, R.G.Harley, F.C.Lambert, 
G.K.Venayagamoorthy, Neural network 
method based method for predicting non liner 
load harmonics, IEEE Transactions on Power 
Electronics,Vol.22.No.3,2007,pp.1036-1045. 

A.S.S. Murugan, V. Suresh Kumar
International Journal of Power Systems 

http://www.iaras.org/iaras/journals/ijps

ISSN: 2367-8976 16 Volume 3, 2018




