
A NOVEL TUNING TECHNIQUE OF MULTI-BAND POWER
SYSTEM STABILIZER USING EXPECTATION AND

MAXIMIZATION ALGORITHM FOR MULTI-MACHINE
SYSTEM

A.RAGAVENDIRAN
Pondicherry Engineering college

Department of EEE
Pillaichavady, Puducherry

India
ragavendiran.as@gmail.com

R. GNANADASS
Pondicherry Engineering college

Department of EEE
Pillaichavady, Puducherry

India
gnanadass@pec.edu

M.KAVITHA
Dr SJSPM College of Engg& Tech.

Department of EEE
Pathukannu, Puducherry

India
kavithamrgn@gmail.com

Abstract: Generators have to meet the change in real and reactive power demand of the practical power system.
The real power variations in the system have to meet out by the rescheduling process of the generators. But there
is a huge trust to meet out the reactive power load demand. The excitation loop of the corresponding generator
is adjusted with its electric limits to activate the reactive power of the network. To expedite the reactive power
delivery, multi band power system stabilizer (MB-PSS) is connected in the exciter loop of the generator for various
system conditions. In this paper, a new Sparse Recursive Least Square (SPARLS) algorithm is demonstrated to
tune the MB-PSS parameters to meet the vulnerable conditions. The proposed SPARLS algorithm makes use
of expectation maximization (EM) algorithm to tune the MB-PSS. A comparative study between the proposed
SPARLS and RLS algorithm has been performed on three machine nine bus systems. The simulation results
obtained will validate the effectiveness of the proposed algorithm and the impact of stability studies of the power
system operation under disturbances. The SPARLS algorithm is also used to tune the parameters of MB-PSS to
achieve quicker settling time for the system parameter such as load angle, field voltage and speed deviation. It is
found that the SPARLS is a better algorithm for the determination of optimum stabilizer parameter.

Key–Words: Power system stabilizer, PID controller, RLS algorithm, SPARLS algorithm, SMIB system, EM
method

1 Introduction

In a power system, low frequency oscillation is one
of the most important phenomena that occur in a dy-
namical system. Damped oscillations are contribut-
ing an important role in power system. These oscilla-
tions will damp automatically after particular time be-
cause both AVR and generator field coil will produce
some amount of damping torque. If oscillations are
not properly controlled, it will damage the system and
the relay pick will block out the generator from the
system. In order to, avoid the above mentioned prob-
lems, the power system stabilizers are widely used to
damp out the oscillation of the electrical machines in
the power system. Larsen et al. designed the PSS
based linear model of the plant using a particular op-
erating point [1]. However, almost all the power sys-
tems are nonlinear and the operating point is change-
able, which changes with respect to the operating con-
dition. Therefore, the performance of a Conventional

Power System Stabilizer (CPSS) may deteriorate un-
der variations that result from nonlinear and time-
varying characteristics of the controlled plant. The
PSS performance is highly sensitive to wide range op-
erating point when artificial intelligence approaches
and fuzzy logic are used to tune the PSS [2-4]. Sim-
ilarly, artificial neural networks [5] and Neuro-fuzzy
based PSS have been presented to tune the PSS in [6-
7]. The application of robust control methods for de-
signing PSS has been presented in [8-10] and adap-
tive control algorithms based PSS are presented in
[11-13]. Most of the adaptive PSS proposed so far
have the signal-synthesizing problem with self-tuning
controller. A self-tuning PID excitation controller is
proposed in this paper to improve the damping of a
synchronous machine. Tabatabaei et al. proposed a
comparative study to analyze the performance of PI
and PID controller [14], and from the analyze, the au-
thor has demonstrated that the PID controller is giving
better dynamic response than a PI controller. To tune
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the PID, various self-tuning methods have been pro-
posed, such as Particle swarm optimization, Genetic
algorithm, Fuzzy logic and pole placement nonlinear
programming techniques [15-17]. The recursive fuzzy
identification approach is used to tune the PSS for a
complex nonlinear system as in [18]. The recursive
least square (RLS) and genetic algorithm are used to-
gether to tune the PID controller. The RLS developed
to estimate the system parameters. The genetic algo-
rithm (GN) is developed to tune the system param-
eters. Both RLS and GN algorithms are established
in the ladder programming environment [19]. The
above mentioned methods are computationally com-
plex and the solution requires a large number of it-
erations. In general, the RLS algorithm cannot force
any limits on the input parameter formation. As an ef-
fect of this simplification, the computation complex-
ity is () per time iteration (where is the size of the
data matrix). This becomes the major drawback for
their applications as well as for their cost effective im-
plementation. Therefore, to tune the PSS in an inter-
connected system, less complexity with less iteration
is required. When comparing the above mentioned
drawback method with RLS technique, it is less itera-
tion with the fast converging method but computation-
ally complex one. The Sparse RLS algorithm is com-
pared with the RLS, a technique which is less compu-
tational complexity and fast converging. The sparse
vectors require less time to converge [20 & 21]. In
this paper, three machine nine bus system and power
system stabilizer have been modelled using Simulink
block sets. The performance of the MB-PSS and PID
has been demonstrated on the three machine nine bus
systems. The characteristic behavior of the conven-
tional RLS is compared with SPARLS when subjected
to different case studies on the above test system. The
outline of the paper is as follows: First section de-
scribes the necessity of MB-PSS and detailed state of
the art about its performance. Section 2 describes the
optimization of the MB-PSS and PID controller struc-
tures. The brief background of the SPARLS algorithm
is given in the Section 3. Section 4 discusses the three
machine nine bus systems. Simulation results are pro-
vided in the Section 5. Finally, the conclusions are
presented in the Section 6.

2 General Block Diagram of Multi
Band Power System Stabilizer

The need for effective damping of a wide range
of electromechanical oscillations motivated the con-
cept of the MB-PSS. As its name reveals, the MB-
PSS structure is based on multiple working bands.

Three separate bands are used with the MB-PSS, re-
spectively dedicated to the low, intermediate, and high
frequency modes of oscillations. The low band is typ-
ically associated with the power system global mode,
the intermediate band with the inter-area modes, and
the high band with the local modes. The low band is
taking care of very slow oscillating phenomena such
as common modes found in an isolated system with a
typical frequency range of 0.05 Hz. The intermediate
band is used for inter-area modes usually found in the
range of 0.2 to 1.0 Hz. The high bands are dealing
with local modes, either plant or inter machines, with
a typical frequency range of 0.8 to 4.0 Hz. Each of
the three bands is made of a different band-pass filter,
gain, and limiter as shown Figure1. The outputs of the
three bands are summed and passed through a final
limiter producing the stabilizer output Vstable (Fig-
ure 1). This signal, then modulates the set point of the
generator voltage regulator so as to improve the damp-
ing of the electromechanical oscillations. Usually, a
few of the lead-lag blocks should be used in MB-PSS
circuits. The MB-PSS comprises three main func-
tions, the transducers, the lead-lag compensator and
the limiters. Two speed deviation transducers are re-
quired to feed the three band structure used as lead-lag
compensator. Four adjustable limiters are provided,
one for each band and one for the total PSS output are
shown in Figure 1. Multi-band power system stabi-
lizer simulation diagram is shown in Fig. 2. The speed
deviation transducers of MB-PSS is shown in Fig. 2,
are both derived from machine terminal voltages and
currents. The first one, so called , is associated with
the first two bands. Its measurement is accurate in the
0 to 2.0 Hz range. , the second transducer is designed
for the high band with a frequency range of 0.8 to 5.0
Hz. Conventional MB-PSS provides effective damp-
ing only on a particular operating point. But MB-PSS
cannot damp a wide range operating point. PID based
MB-PSS provides good damping for a wide range of
operating points. The function of PID controller has
been discussed bringing in the next section.

Figure 1: Multiband Power system stabilizer
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Figure 2: Simulink diagram of multi band power sys-
tem stabilizer

3 Problem identification

The entire systems are modelled based on linear-
time-invariant state-space theory around an operating
point from a set of nonlinear differential equations.
The linearized system model is represented in terms
of the state matrix (A), input matrix (B), output matrix
(C), and feed-forward matrix (D) shown in

Ẋ = Ax = By (1)

Y =Cx+Du (2)

where x is the vector of state variables and u is the
vector of input variables. The eigenvalues determined
from state matrix reflect the overall system stability.
Therefore, objective functions are formulated to move
eigenvalue forcefully from unstable region (right side
of s-plane) to stable region (left side of s-plane). The
key properties of an eigenvalue (λ = σ ± jω ) are
damping factor (σ ) and the damping ratio (ξ ) that are
determined from

σi = real(λ ) (3)

ξi =−
σi

σ2
i +ω2

i
(4)

The main purpose of objective function formulation
is to shift eigenvalues from unstable region to stable
region. These types of objective functions are formu-
lated by focusing property of eigenvalues (either or)
that partially ensure system stability for total operat-
ing points. From research paper [16 & 17], the objec-
tive function is constructed to improve only damping
factor shown in equation (5). Damping Index (DI) is
considered as the objective function that considered

all dominant modes to achieve maximum damping ra-
tios. Here, DI is minimized in order to optimize con-
troller parameters

Ob jective f unction = MinDI =
n

∑
i=1

(1−ξi) (5)

where
ξ = damping ratio
i = 1.2, · · ·n and n is the total number of eigenvalues
in the power system.
The objective functions are maximized or minimized
in order to achieve system stability under constraints
of damping controller parameters shown

Kmin
stab ≤ Kstab ≥ Kmax

stab (6)

Kstab=stabilizer gain

T min
1 ≤ T1 ≥ T max

1 (7)

T1 - Time constant of lead compensator

T min
2 ≤ T2 ≥ T max

2 (8)

T1 - Time constant of lead compensator

T min
w ≤ Tw ≥ T max

w (9)

Tw Washout Time constant Conventional PSS pro-
vides effective damping only on a particular operating
point. But PSS cannot damp a wide range operating
points. PID based PSS provides good damping for a
wide range of operating points. The function of PID
controller has been discussed brought in the next sec-
tion.

4 Proportional Integral and Deriva-
tive Controller

A PID controller is a simple three-term controller.
The letters P, I and D stand for: P -Proportional, I
Integral and D Derivative. The transfer function of
the most basic form of PID controller,

C(s) = Kp +
Ki

S
+Kd(s) (10)

where

• KP = Proportional gain,

• KI = Integral gain and

• KD =Derivative gain.
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The effects of increasing each of the controller pa-
rameters KP, KI and KD can be summarized as

• Use KP to decrease the rise time.

• Use KD to reduce the overshoot and settling time.

• Use KI to eliminate the steady-state error.

The self tuning gains of the PID controller [22]

Kp = (s1 +2s2)/(1+ r1) (11)

KI =−(s0 + s1 + s2)/T5) (12)

and

KD = [r1s1− (1− r1)s2]/(1+ r1)T5 (13)

Where s0,s1,s2 ,and r1 are algorithm estimated values
[22]. In this paper, self tuning PSS and PID controller
are proposed by RLS and SPARLS algorithm. The
RLS algorithm is used for automatic tuning of PSS
and PID controller. The Recursive Least Square is
one of the basic and fast converging methods used for
automatic tuning of PSS and PID controller, but com-
putationally this is the complex algorithm.

5 RLS algorithm

The RLS algorithm is used to identify the system
parameters and helps to adjust the gains of the PID
controller for system stability. The sampling data is
generated by executing the system parameters for a
specified interval of time. By applying the RLS al-
gorithm, a sampling sequence is formed. The opti-
mal system parameter estimation is carried out by ob-
taining the mean value of two successive moments of
sampling. Fast response when compared to AI tech-
niques. It is used to find out the least mean square
error of the system in a recursive manner. RLS used
for MB-PSS tuning and to determine the optimal sys-
tem parameter. Manual calculation is complex. RLS
algorithm is using to reduce the Mean Least Square
error (MLE). This MLE problem is hard to solve in
RLS algorithm. But by using the SPARLS (EM) algo-
rithm, it is easy to solve. SPARLS algorithm slightly
modified from RLS algorithm. Schematic difference
of the Sparse RLS and RLS algorithm is shown in Fig.
3.

5.1 SPARSE RLS (SPARLS) algorithm

The term sparse refers to a computable property of
a vector. It means that the vector is small in sense but
not length that is important. Instead sparsity concerns

(a)

(b)

Figure 3: Schematic diagram (a) RLS algorithm (b)
SPARLS algorithm

the number of non-zero entries in the vector. A wide
range of attractive estimation problem deals with the
estimation of sparse vectors. Many values of attention
can naturally be modelled as sparse. The SPARLS al-
gorithm is used to identify the system parameters and
helps to adjust the gains of the PSS/PID controller to
bring the stability of the system. The sampling data
is generated by executing the system parameters for a
specified interval of time. By applying the SPARLS
algorithm, a sampling sequence is formed. The op-
timal system parameter estimation is carried out by
obtaining the mean value of the two successive mo-
ments of sampling. The forming and description of
the SPARLS sampling is explained as follows: Let the
system model (1) is given in the form

Ay(m) = Bx(m−1) (14)

where x(m− 1) is a discrete delay input signal, y(m)
is discrete output signal, and consider a system de-
scribed by its input output relationship

y(m) = a1y(m−1)+a2y(m−2) = bu(m−1)+b2u(m−2)

(15)

Which is co-efficient estimation by RLS method

A(z−1)y(z−1) = z−1B(z−1)u(z−1) (16)

Where z−1 is the backward shift operation. The value
of the polynomials for the above discrete function is
determined as follows:

A(z−1) = 1+a1z−1 +a2z−2 + ....+anaz−na (17)

B(z−1) = b0 +b1z−1 +b2z−2 + ....+bnbz−nb (18)

where A and B are polynomials. a1....ana and b0....bnb
are co-efficient of polynomials. A generalized model
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of the system (2) can be presented in the following
form

y(m) = uT
θ (19)

where θ is the unknown parameter and u is the known
parameter. The unknown parameters are defined as

uT = [−a1....−ana,b0....bnb] (20)

This consists of measured values of input and output

yT (m) = [y(m−1)......y(m−na),x(m−1).....x(m−nb−1)]

(21)

where An accurate description of the system can be
obtained by the model (5). Hence, the system parame-
ters θ should be determined from the output and input
of signal samples at the system.

y(m) = uT (m)θ̂ + e(m) (22)

where θ̂ is a vector of unknown sampling param-
eter of the system, and is an error in the modelling.
θ̂ should be correctly identified so as to minimize the
modeling uncertainties. From the equation 14, the er-
ror is obtained as

e(m) = x(m)−d(m) (23)

The canonical form of the problem typically assumes
that the input-output sequences are generated by a
time varying system with parameters represented by
w(m). Thus the process is described by an estimate of
the desired model

d(m) = w(m)y(m)+η(m) (24)

Where η(m) is the observation error. d(m) is the
desired output of the filter at time. The error will be
assumed to be random error. The estimator has only
access to the streaming parameter x(m) and d(m) .
d(m) value is substituted in the error equation (6), the
error is obtained as

e(m) = x(m)− (w(m)y(m)+η(m)) (25)

The SPARLS algorithm is associated for updating er-
ror coefficients so that the SPARLS algorithm can be
operated in an unknown parameters and nonlinear sys-
tem. The system error characteristic is determined by
adjusting system coefficients according to the system
parameter conditions and performance criteria assess-
ment. The input vector at time is defined by

x(m) = [x(m),x(m−1), .....,x(m−N−1)]T (26)

The weight vector at time m is defined by

w(m) = [w0(m),w1(m), ....wN−1(m)]T (27)

The operation of the adaptation at time can therefore
be stated as the following optimization problem

minw(m) = f (e(1),e(2), .....,e(m)) (28)

Where f ≥ 0 is a certain cost performance. With
an appropriate choice of f , one can possibly obtain a
good approximation to w(m) by solving the optimiza-
tion problem given in above equation. In general, this
is an estimation problem. The Lagrangian formula-
tion shows that if f = frls , the optimum solution can
be equivalently derived from the following optimiza-
tion problem

minw(m)
1

2σ2 |D(m)1/2d(m)−D(m)1/2X(m)w(m)|22+γ(m)|1
(29)

D(m) =


λ n−1 · 0 0
· λ n−2 · 0
0 · 0 ·
0 0 · 1

 (30)

Let x ∈CN be a vector in which most of its weight is
distributed on a small number of the total set of vec-
tors known as sparse i.e. A vector x is called sparse,
if |x|0 << N. For any x, let |x|0 denote the number of
non-zero coefficients of x. The l0 quasi-norm of x as
follows

|w(m)|0 = |
xn

xn
, 0| (31)

the following cost function

fw(m) =
1

2σ2 |D(m)1/2d(m)−D(m)1/2X(m)w(m)|22 + γ|ŵ(m)|1

(32)

=
1

2σ2 d(m)−X(m)w(m)∗D(m)d(m)W (m)|22+γ|w(m)|1
(33)

The expectation maximization algorithm is an effi-
cient technique for the iterative procedure to compute
the maximum likelihood estimate in the presence of
missing or hidden data. In each iteration, the EM al-
gorithm consists of two steps i.e. E-step and M-step.
The maximum likelihood problem is

maxw(m){logp(
d(m)

w(m)
)− γ|ŵ(m)|} (34)

This ML problem in general is hard to solve. But by
using the EM algorithm, it is easy to solve. The idea is
to decompose the error vector η(m) in order to divide
the optimization problem. The lth iteration of the EM
algorithm is as follows
E-step:

Q(w|w(m)) =− 1
2σ2 |r

l−w|22− γ|w|1 (35)
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where

rl(m) = (I− α2

σ2 X∗(m)D(m)X(m)ŵ(m)+
α2

σ2 X∗(m)D(m)d(m)

(36)

where σ = d(m)− x(m)w(m− 1) is the a priori
error.
M-step:

ŵl+1(m) = sign(rl(m)) · (|rl(m)|− γα
2I) (37)

In order to simplify the low complexity implementa-
tion of the EM algorithm for rl(m) ∈ RN . General-
ization of rl(m)∈CN is straightforward, since the low
complexity implementation can be applied to the real
and imaginary parts of rl(m) independently. Let Il be
the support of rl(m) at the Ith iteration. Let

I(l)± = {ir(l)(n)> γα
2 ⊂ I(l) (38)

wl+1
i (n) =

{
ri

i± γα2 i ∈ I(l)
0 i ∈ I(l)+UI(l)

(39)

for i = 1,2, ....,N.

B(m) = I− αs

σ2 x∗(m)D(m)x(m) (40)

u(m) =
α2

σ2 x∗(m)D(m)x(m) (41)

B(m)wl+1(m) = B(l)
I+(r

l
I)(n)± γα

21I±)± γα
21I±± γα

21I−

(42)

This new set of iteration has a lower computational
complexity, since it restricts the matrix multiplica-
tions to the instantaneous support of the estimate
r(l)(m), which is expected to be close to the support
of w(m) . The above equations denote the iterations of
low-complexity expectation maximization algorithm.
Upon the arrival of the nth input, B(m) and u(m) can
be obtained via the following updated rules

B(m) = λB(m−1)− α2

σ2 x(m)d(m)+(1−λ )I (43)

u(m) = λu(m−1)+
α2

σ2 x(m)d(m) (44)

Upon the arrival of the M input, the SPARLS al-
gorithm computes the estimate w(l)(m) i.e. update the
w(l+1)(m) by given B(m) and u(m) . The input argu-
ment denotes the number of EM iterations. Without
loss of generality, it can set the time index η = 1 such

that x(1) , 0. The main objective of SPARLS error
cancellation is accomplished by feeding the system
output back to the SPARLS algorithm and adjusting
the controller through a SPARLS algorithm to mini-
mize the number of input samples, better peak signal
to error ratio and convergence time. SPARLS algo-
rithms have the ability to adjust its impulse response
to algorithm to find out the correlated signal in the
input. It requires the knowledge of the signal and er-
ror characteristics. SPARLS algorithms have the ca-
pability of SPARLS tracking the signal under non-
stationary conditions. Error cancellation is a variation
of optimal algorithm that involves producing an esti-
mate of the error by algorithm the reference input and
then subtracting this error estimate from the primary
input containing both system response and error. The
flow chart of SPARLS algorithm is given below

5.2 Steps by Step Procedure for SPARLS Al-
gorithm

Step 1. Initialize the reference parameter such as
MB-PSS parameters.

Step 2. Run the system obtain sample values.
Step 3. Calculate the output y(m) from obtaining pa-

rameters using equation (16).
step 4. The proposed algorithm is an estimation of

sparse vectors (26).
Step 5. Estimate error between set value and the de-

sired value.
Step 6. Update the error using equation (34).
Step 7. Calculate the value of MB-PSS parameter.
Step 8. Update the new MB-PSS parameter.

6 System Description

The demonstrated test system consists of three gen-
erators, nine buses, six numbers of 230 KV transmis-
sion line, three transformers, 315 MW, 115 MVar load
demand. The one line diagram of the above system
and the corresponding power flows in it is shown in
Figure 4, where the generators are located in different
places and connected through the transmission lines.
The MB-PSSs are installed at synchronous generator
is given to MB-PSS as input whose output is used to
get stable voltage (Vpss). The stable voltage is given
generators to improve the transient performance af-
ter a big disturbance. The entire generator, units are
equipped with the fast-acting static exciters and the
speed governors. The rotor speed deviation of syn-
chronous generator through the voltage regulator and
exciter. The output voltage of the exciter is given to
excitation system stabilizer and is compared with ref-
erence to terminal voltage. The output power from the
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synchronous generator is given to infinite bus through
transmission voltage. To analyze the performance of
the MB-PSS, a model is developed in Simulink block
set of MATLAB. The functional block set of MB-PSS
is developed in Simulink environment which is given
in Fig. 5.

7 Simulation Results and Discussion

The performance of RLS based PID with MB-PSS
and SPARLS based PID with MB-PSS were studied in
the Simulink environment for different operating con-
ditions and the following test cases were considered
for simulations.

• Case I: To normal load the variation of speed de-
viation, field voltage and load angle were ana-
lyzed for MB-PSS, without the MB-PSS, RLS
& SPARLS based MB-PSS and RLS & SPARLS
based PID with MB-PSS.

• Case II: The variation of the above mentioned
cases were analyzed when system subjected to
150 % increased in loading condition.

• Case III: System was subjected to fault condition
when the variation of the above mentioned cases
were analyzed.

To illustrate the effectiveness and robustness of the
proposed algorithm different possible case studies are
explained as follows, the controller reduces the over-
shoot and settling time to the nominal level when
subjected to MB-PSS, without the MB-PSS, RLS &
SPARLS based MB-PSS and RLS & SPARLS based
PID with MB-PSS and the inference of the simulation
results are as follows.

Base Load Condition- Here, the synchronous ma-
chine subjected to base load is taken as 315 MW. The
MB-PSS is installed in the corresponding exciter loop
of all the generators and the performance characteris-
tics is given in Figure 7 to 12. The performance of
MB-PSS was demonstrated on a three machine nine
bus systems in the Simulink environment for differ-
ent operating conditions. Based upon the RLS and
SPARLS algorithm MB-PSS based PID gain values
are tuned in Matlab Simulink. From the Figure 8 it is
observed that the SPARLS based PID with MB-PSS
can provide, the better damping characteristic than the
RLS based PID with MB-PSS. The SPARLS based
PID with MB-PSS reduced the overshoot and the sys-
tem reaches the steady state quickly compared with
RLS based PID with MB-PSS. The speed deviation
of the RLS & SPARLS based PID with MB-PSS are

shown in Figure 7 and Figure 8 which depicts that
the SPARLS based PID with MB-PSS can provide the
better damping characteristic than the RLS based PID
with MB-PSS. From the Figure 8, it is observed that
the RLS based PID with MB-PSS controller also gives
better settling time (3.5 Sec). The SPARLS based PID
with MB-PSS further reduces the settling time at 2
Sec and also the overshoot. By this effect, the field
voltage (Figure 9) will be stable and in turn ensures
the system stability. In response of Speed deviation
Figure 8, the overshoot reduced to 0.015 from 0.013
using SPRLS based PID with MB-PSS therefore the
system reaches the stable state quickly. It is neces-
sary to maintain the speed in the synchronous gen-
erator should be making the system reach the steady
state as early as possible for that SPRLS based PID
with MB-PSS give better optimal solution compared
to others. Normally for the smart system the load an-
gle should be maintained around 15 to 45 degrees.
Here it is inferred that after the inclusion of SPARLS
based PID with MB-PSS the damping oscillation was
reduced, it also boosts up the load angle 20 degrees.
According to Figure10, SPARLS based PID with MB-
PSS improves the rotor angle to the maximum extent
by reaching the settling time before 3 Sec. The per-
formance of SPARLS and RLS in speed deviation is
shown in Figure11. From the results obtained, it is
obvious that the speed estimated from the SPARLS
tracks closely than actual speed even when there is a
change in the parameter. The error in the speed esti-
mation is almost negligible whereas RLS is not closer
to the actual speed and fails to control the error in the
speed estimator. The SPARLS based speed estimation
is shown to overcome the RLS. The error of SPARLS
and RLS (Figure 11 and Figure 12) are 0.2 % and 5 %
respectively.

Increasing in Load Condition- In this case, the
Synchronous generator is subjected to increased in a
load of 50% from the base load. The performance
characteristics of the system with SPARLS based PID
with MB-PSS and RLS based PID with MB-PSS are
illustrated from Figure 13 to 16. From the base load
condition, it is observed that SPARLS based PID with
MB-PSS performance is better than the other con-
troller, in this increasing in load condition compared
to the RLS & SPARLS are compared based on PID
with MB-PSS alone. From the Figure 13, the SPARLS
based PID with MB-PSS provides a better solution by
reducing overshoot to 75% and the settling time in
2.5 Sec even in heavy load condition. By this effect
the field voltage (Figure 15) will be stable and it will
maintain the system stability. According to Figure 13,
the overshoot was heavy for RLS based PID with MB-
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PSS and it affects the stability of the system. The
SPARLS based PID with MB-PSS reduces the over-
shoot and makes the system to reach steady state be-
fore 2.5 Sec. Therefore, it is inferred that SPARLS
based PID with MB-PSS supports the synchronous
generator to maintain synchronous speed even in in-
creasing load condition. During the load condition,
the SPARLS based PID with MB-PSS makes the sys-
tem to settle in 2 Sec and it boosts up the system to
maintain the field voltage (Figure 15). In this case,
IT IS ALSO maintains stability IN the proposed sys-
tem. To analyze the performance of RLS and SPARLS
the speed deviation estimated for the increasing load
condition is shown in Figure 13. The error estimated
from RLS and SPARLS is shown in Figure 16 (b).
From the results obtained, it is clearly understood that
speed deviation estimated from the SPARLS is very
well, even with the increasing load, the error is 0.45
%. Thus RLS based speed deviation is found to be
less sensitive even in increasing load condition, this
is because the RLS algorithm does not force any re-
striction on the input data formation, whereas speed
deviation from the RLS deviated from the actual. It is
also noted that the error in the speed deviation keeps
on increasing. Thus, from the above analysis, it is un-
derstood that SPARLS algorithm exhibits stable per-
formance, whereas RLS algorithm shows (Figure17)
unstable performance. For the comparison, both the
figures are shown with the same scale. From the re-
sults obtained, it is seen that the SPARLS based speed
deviation displays stable performance that tracks the
actual speed well whereas RLS becomes unstable and
fails to reduce error. The SPARLS based speed de-
viation is shown to overcome the RLS based speed
deviation.

Fault Condition- This illustrates the stability of
the system during vulnerable condition, three phase
fault is assumed to happen at the transmission line.
The fault persists in the system for 0.01 Sec and it is
cleared after 0.1 Sec. The parameters of the system
during fault condition are illustrated in Figure 18 to
Figure 19. From the Figure 18, it is observed that the
RLS based PID with MB-PSS produced more over-
shoot and settles at 5 Sec. The SPARLS based PID
with MB-PSS reduces the settling time of 3.5 Sec and
also the overshoot. According to Figure18, the over-
shoot was high for RLS based PID with MB-PSS,
therefore, the stability of the system was affected. The
SPARLS based PID with MB-PSS reduces the over-
shoot to 50% and makes the system to reach steady
state before 3.5 Sec. From this case, it is inferred that
PID with MB-PSS supports the synchronous genera-
tor to maintain synchronous speed even at severe fault

condition.

8 CONCLUSION
This paper proposes a novel SPARLS algorithm devel-
oped for tuning of MB-PSS based PID. The SPARLS
algorithm is simple to understand and easier to de-
sign. The proposed SPARLS algorithm is developed
to tune the parameter of PSS based PID and its per-
formance is compared with RLS for the various cases
such as base load, increasing in load and fault con-
ditions. Through extensive simulations, the proposed
SPARLS is shown to improve the PSS based PID pa-
rameters as compared to RLS. The proposed method
is compared with the conventional RLS algorithm.
The error in the speed deviation from the SPARLS al-
gorithm under base and increasing in load condition
is found to be 0.2% and 0.45 % respectively. The
SPARLS algorithm is performing very well than the
conventional RLS algorithm. The error in the speed
deviation through the proposed SPARLS algorithm
under base and increasing in load condition is found
to be 0.2%. It is concluded that the proposed SPARLS
algorithm provides a better results, less complex and
better performance than that conventional RLS algo-
rithm over a wide operating range.
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Figure 4: This is my flow chart

Figure 5: One line diagram Three Machines, Nine Bus
system

Figure 6: Simulink diagram

Figure 7: Speed deviation during a base load condi-
tion
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Figure 8: Speed deviation during a base load condi-
tion

Figure 9: Field voltage during base load condition

Figure 10: Load angle during base load condition

(a)

(b)

Figure 11: SPARLS (a) Performance curves for base
load condition: Actual and estimated speed deviation
(b) Performance curves for base load condition: error
between actual and estimated
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(a)

(b)

Figure 12: RLS (a) Performance curves for base load
condition: Actual and estimated speed deviation (b)
Performance curves for base load condition: error be-
tween actual and estimated

Figure 13: Speed deviation during increased load con-
dition

Figure 14: Speed deviation during increased load con-
dition

Figure 15: Field voltage during increased load condi-
tion
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(a)

(b)

Figure 16: (a) Performance curves for increased
load condition: Actual and estimated speed devia-
tion (SPARLS). (b) Performance curves for increased
load condition: error between actual and estimated
(SPARLS).

(a)

(b)

Figure 17: (RLS). (a) Performance curves for in-
creased in load condition: Actual and estimated speed
deviation. (b) Performance curves for increased load
condition: error between actual and estimated.

Figure 18: Speed deviation during fault condition
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Figure 19: Speed deviation during fault condition
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